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Abstract— Materials with random microstructure can have an
adverse effect on ultrasonic measurements through scattering and
aberration of the acoustic field. We have developed a theoretical
and experimental technique for characterising the effect of the
material microstructure on the propagation of acoustic waves.
The theoretical method predicts propagation of the statistical
properties in the random medium. Using this model and a
novel experimental technique we can extract materials properties
from observations of acoustic aberrations. The microstructure
has been modelled as having grains randomly orientated and
weakly anisotropic. Moreover, individuals grains are treated to
be equiaxed. This is summarised by assuming that the correlation
function for the wave number has a Gaussian shape. Under this
assumption, the approximated power correlation function for
the acoustic field has been obtained using the stochastic wave
equation for random media, along with numerical simulation
using phase screen theory. The experimental evidence that
aberrations are frequency dependent is presented. Multiple c-
scans on titanium were performed using a 10MHz transducer
as an ultrasonic source. The output of the transducer gives
substantial frequency components between 6MHz and 16MHz.
The variation of the frequency on a fixed sample enables us
to examine different measurement regimes (higher frequencies
correspond to large grains). The statistical analysis and estimated
power correlation function from measurements are compared to
a modelled power correlation function. The correlation length
and standard deviation of the wave number define the power
correlation function of the field. This function has been fitted to
the estimated power correlation from measurements on titanium
6-4, and values for the variance and correlation length were
obtained. The paper demonstrate that the stochastic model is
capable of quantitative prediction of the predominant wave
scattering effect in granular materials.

I. INTRODUCTION

Acoustic aberrations are important in surface wave mea-
surements. It has been realised that aberrations affects the
accuracy of measurements [1]. Over the years an optical
scanning acoustical microscope (O-SAM) has been developed
for detecting and acoustic adapting of aberrations in polycrys-
talline materials, [1], [2]. The aim of this paper is to show the
experimental evidence of acoustic aberration and to study them
from a statistical point of view. That is, since most engineering
materials like titanium have random microstructure (crystal
or grains randomly orientated) the response to propagation

of acoustic waves will be random. The grain microstructure
may have various effects on ultrasonic wave propagation.
It attenuates, scatter and aberrates ultrasonic waves as they
propagate within this medium. Generally speaking aberrations
are wavefront distortion of ultrasonic waves propagating in
random medium. It would be desirable to quantify the strength
of aberrations on a material with random microstructure. The
main observation relies on the transverse coherence of the
acoustic field as it propagates. The first step is to measure
aberrations then the strength by means of transverse power
correlation function of the acoustic field, which will be the
subject of forthcoming sections. The theoretical description
of SAW propagation is based on a scalar stochastic theory
for waves in a random medium. Therefore it is possible to
obtain an expression for second order moments of the field
which carries information of microstructure. The behaviour
of power correlation is mainly dictated by the scale of the
inhomogeneity which is a rough estimation of grain size. The
theoretical derivation is not included in this paper as the main
purposes is to show how this technique behaves under different
regimes of frequency and also because it has been developed
in a previous paper, [3].

II. ABERRATIONS IN METALS

Fig. 1 shows several speckle patterns obtained with exper-
imental arrangement shown in Fig. 3. It is well known that
microstructure or grain size is sensitive to frequency. The
frequency output of the transducer where aberrations can be
observed lies between 5MHz and 16MHz approximately. The
idea is to test the theoretical power correlation within this
range.

The first column shows the amplitude distribution of the
acoustic field whereas second column shows the residual
phase. The important point here is to observe how the ampli-
tude breaks up with distance as well as phase variations, where
propagation is from left to right. The fundamental frequency
is 10MHz so analysis of the speckle pattern at that frequency
is expected to provide the most accurate estimation of mean
grain size.
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Fig. 1. Amplitude and phase distribution of the acoustic field uy(r, ω|γ)
showing aberrations in Ti at different frequencies. The propagation is from
left to right.

As it can be observed the speckle patterns are slightly
different as the acoustic field interacts at different frequencies
with the grains. The differences are more clearly observed
with the estimated power correlation at each frequency. This
statistical analysis is been done in section III as it requires
some mathematical definitions.
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Fig. 2. Amplitude and phase distribution of the acoustic field at 10MHz on
an ideal sample (Glass) with no microstructure. The transducer output is not
a single beam as one might expect.

The aberrations in these set of experiments turned out to be
weak as the output beam dominates propagation. Comparison
can be made with Fig. 2 where is it shown phase and amplitude
distribution on an ideal sample.

A. Experimental setup

In this experiment a 10MHz transducer has been used as the
source to generate SAW within the material Fig. 3(a). Multiple
c-scan measurements were performed over the surface of a
piece of titanium-alloy. The source was relocated at multiple
positions on surface and a c-scan was performed each time
Fig. 3b,c. The purpose was to make the ultrasonic field
interact with different grain sizes and to build an ensemble
of the acoustic field. Therefore, for each point r = (x, z)
and fixed source position a time-waveform, uy(r, t) for the
vertical displacement was obtained. The displacement uy(r, t)
has been detected using a modified knife-edge detector, [2].
Then the data were acquired using a oscilloscope Fig. 3(b).
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Fig. 3. (a) Sample and transducer array for SAW generation. (b) Area in
xz plane which c-scan has been performed. (c) The black square represents
the multiple positions where transducer has been located to perform a c-scan
according diagram (b); whereas arrows indicates direction of propagation.

The waveform u(r, t|γ) has been transformed to the frequency
domain using Fourier transform,

uy(r, ω|γ) =
∫

uy(r, t|γ)e−iωtdt (1)

where γ represents a sample of the acoustic ensemble across
microstructural ensemble.

III. DATA STATISTICAL ANALYSIS

The discussion is based on statistical concepts such as the
second order moment or energy correlation function for finite
sequences. Notation will be introduced to explain some of the
key concepts so that a comparison between the theory earlier
developed in paper, [3]and experiments can be achieved . The
xz plane has been divided into a grid of size m × l for data
acquisition. The pixel size is 25µm in x-direction and 1000µm
in z-direction. The displacement uy at every grid point is being
denoted by Uγ

kl and analysis applies for each propagation dis-
tance. By definition the cross-correlation is 〈Uγ

klU
γ∗
k′l〉 where 〈〉

denotes the ensemble average. The estimation of the ensemble
average of Zγ

kk′l=Uγ
klU

γ∗
k′l is rather complicated since there is

little statistical information about Ukl. Instead, two different
averages will be performed. By making m = k − k′, Zkk′

it can be rewritten as Zγ
k(k+m)l=Uγ

klU
γ∗
(k+m)l. Since there is a

random function for each m, the average over k is performed
as well as the ensemble average, leading to

〈Zγ
ml〉 =〈 1

|γ|
∑|γ|

k Zγ
k(k+m)l〉

= 1
|γ|

∑|γ|
k 〈Zγ

k(k+m)l〉 (2)

Here |γ| is the total number of measurements. 〈Zγ
m〉 remains

a complex function so its modulus will be considered, and it

2005 IEEE Ultrasonics Symposium 1140



will be termed as the power correlation function; hence:

Γ e
ml = |〈Zγ

ml〉| (3)

The measured correlation function between finite signals, Γml

implemented numerically is shown in Fig. 4. The importance
of this function will become apparent when it is compared to
the theoretical. The overall decay of this function is strongly
related to aberrations due to the interaction between the
ultrasound and grain structure.
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Fig. 4. Power correlation function at different frequencies showing how
weakly it decay with didstance

A. Theoretical power correlation

Expression (3) is to be compared with a theoretical power
correlation of uy developed in [3]. The mathematical definition
of transverse correlation for uy is as follows,

Γuy
=

∫
〈uy(x, z, ω|γ)u∗

y(x + τ, z, ω|γ)〉dx (4)

where τ = x−x′. The propagation of integrand in (4) in a ran-
dom medium has been the subject of several papers in subjects
other than ultrasonics, [4]–[8]. Nevertheless, an approximate
solution to propagation of the second order moment through
random media has been obtained in [3]. The approximation
is based on a phase screen theory, [9] and the stochastic
wave equation. The main assumption is that the approximated
wave velocity variation can be accounted for by Gaussian
random function whereas aberrations are quantified by means
of standard deviation. That it is to say, an acoustic wave
propagates in a random medium according to the stochastic
wave equation and wave number k(r, γ) = kR(1 + µ(r, γ)).
Therefore variations of velocity with respect to kR are ac-
counted for as σ2 = 〈 (k−kR)2

k2
R

〉 where σ =
√
〈µ2〉 is the

root mean square. kR represents the background wave number
corresponding to the surface wave velocity in homogeneous
medium. In order to obtain an exact expression for Γuy

the
microstructure has been assumed to have equiaxed grains. This

is equivalent to assume that the second moment for µ takes
the form

〈µ(r, γ)µ(r′, γ〉 = σ2e
− |r−r′|2

l2x (5)

where lx is the correlation length of µ, i.e. lx is the minimum
distance where two points r, r′ are no longer correlated. In
fact, lx is the distance where the function in (5) drops to σ2

e .
2lx is approximately a measure of the mean grain size of the
material.

Under the above conditions an exact expression for Γuy
is

obtained and bears the following form

Γuy
= Γ0 exp[−pn(σ2, lx)(1 − e

− τ2

l2x )] (6)

where pn =
√

πk2
R

4 lxσ2(n∆z) and Γ0 is the power correlation
of the field at the source location. The function pn depends
on various parameters but from the above discussion the
important parameters here are lx and σ2 as they dictate the
behaviour of Γuy

. The term n∆z, n an arbitrary integer, in
fact represents the propagation distance at which Γuy

is to
be propagated in this approximation; thus z = n∆z . The
other terms are constant except for the wave number kR which
obviously depends on frequency.

IV. RESULTS

There are two parameters which are free in (6), being σ2

and lx. These have been obtained by fitting Γ e
ml to Γuy

by
using a non-linear least square algorithm. The results for some
representatives frequencies are presented in table I

TABLE I

PARAMETERS FOR STRENGTH OF ABERRATIONS

ω(MHz) 8 9 10 11 12 13

σ 0.024 0.025 0.028 0.028 0.026 0.027

2lx(µm) 351 399 368 428 424 424

Fig. 5 shows a comparison of the predicted and measured
power correlation function with values according to table I.
The fuzzy behaviour at the end of lines in Fig. 5 is due to
noise. Their disagreement in that region is unimportant since
the graphs fit quite well otherwise. The agreement out of the
fuzzy region means that the width and decay ratio of (3) is
well predicted using the stochastic model described by (6).

The weak aberration is reflected in the power correlation
where it decays slowly with distance Fig. 4. It should be
expected, at least theoretically in highly aberrated materials,
that the power correlation decays and gets narrow as it propa-
gates. It can be said that the acoustic field is interacting with
grains. Otherwise, the propagation will imitate propagation in
homogeneous materials.

The parameter 2lx characterise material microstructure but
the metallographic study of the sample tested did not clearly
reveal the grain boundaries so the values in table I could not be
satisfactorily validated using standards techniques. It is worth
mentioning that in paper, [3] where aluminium was tested,
the parameters are in satisfactory agreement with the actual
measured microstructure.
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Fig. 5. LogLog Comparison of measured power correlation (3) and (6)

CONCLUSIONS

A statistical technique has been presented that can serve as a
basis for material characterisation with random microstructure.
The analysis has been based on a stochastic approach as the
medium has been treated as if it were a random medium.
We have obtained parameters that characterise the anisotropy
and length scale of the materials at different frequencies.
The multiple frequency interaction gives information about
different length scales present in the material. In future work
similar measurements will be carried out throughly charac-
terised material grain structure.
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