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ABSTRACT. Many materials contain a random microstructure that can have an adverse effect on ultra-
sonic measurements (reducing signal strength, increasing noise and reducing accuracy) through scattering
and aberration of the acoustic field. To account for those adverse effects we have developed a phase
screen model alongside the stochastic wave equation. This two fold approach allow us to directly model
the field for adaptive correction and to characterise material from the statistical properties of experimental
measurements.

INTRODUCTION

Materials like aluminium and steel that consist of many crystallites or grains on their
micro scale are called polycrystalline materials. The importance for their characterisation by
means of obtaining the grain size distribution has been long recognised among the nonde-
structive testing community. Most studies dealing with microstructure evaluation are based
on estimation of attenuation coefficient for ultrasonic waves propagated in polycrystalline
materials. The attenuation coefficient is obtained by looking at the first moment of the acous-
tic field in the stochastic approach being backscattered a key role. Not only is the backscatter
important in ultrasonic evaluation but also wavefront distortion or aberrations that an acous-
tic wave suffers as it propagates in the material. Aberrations are random functions that can
be observed in a speckle pattern by imaging the ultrasonic field using a c-scan technique [1].
In this paper we present a statistical study of aberrations using a c-scan technique to obtain
speckle pattern of acoustic field for surface acoustic waves. The interpretation of aberrations
caused by the microstructure has been supported by simulating them using scalar stochastic
and phase screen theory. Therefore, one of the purposes of this paper is to analyse approxi-
mate solutions to stochastic Helmholtz’s equation that may represent aberrations of acoustic
waves effectively in inhomogeneous random medium. All these approximations have been
applied to different situations and most methods are reviewed elsewhere, [2, 3]. In particular
we are interested in the parabolic approximation to Helmholtz’s equation, which has been
studied in [2, 3] and its relationship to phase screen approach, which is well known in optics
[4]. In [5] and references therein the authors showed that aberrations in polycrystalline ma-
terials can be simulated using phase screen approach. The authors simulated microstructure
using numerical techniques to simulate grain growth and to build grains boundaries. Taking
into account grain growth, screens were designed accordingly to grain boundary geometry in
a real material to randomly distort the phase velocity of an incident acoustic wave to a ran-
dom media. Those ideas for simulating aberrations [5] will be used in this paper, however,
screens will be designed by assuming some predefined statistical properties for the random
function representing properties of the medium in the scalar description. These two points of
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view are interconnected and its connection is made by defining the screens as a function of
the wave number, as noted in [6] and references therein.

The second order moment or coherence function is the key in understanding the rela-
tionship between aberrations and microstructure. The half-width of the coherence function is
a measure of the size of the speckle pattern and it is believed to be a measure of grain size of
the material on interrogation. The ensemble averaging of speckle patterns requires multiple
measurements obtained by changing the detector and source position across the surface of the
sample. In that way it was possible to measure the average coherence function for aluminium
and compare this to theory to obtain information of grain size. The apparatus used to perform
the c-scan at fundamental frequency of 82 MHz has been developed at The University of
Nottingham and it has been reported over several papers, [5, 1].

It has been assumed that wave number characterising the microstructure is a Gaussian
and isotropic random function. Bearing this in mind, within the parabolic approximation it
is possible to obtain a simple expression for second order moment of the acoustic field if the
wave number isδ -correlated in the direction of propagation [2]. These assumptions allows
significant simplifications in the calculation of the coherence function using phase screen
theory. The assumptions may appear too restrictive as grain shape is far more complicated
than that but to estimate grain size it may be sufficient. The coherence function from the two
points of view are numerically compared as the function using screen theory is too compli-
cated for analytical comparisons. Finally a few experiments were carried out in aluminium
to support the above interpretation of aberrations.

PHASE SCREEN APPROXIMATION

In this section, phase screen theory is described to simulate aberrations of ultrasonic
waves. A phase screen is a complex number of the forms= eiφ [4], whereφ is a random
function representing the phase variations of the acoustic field scattered by the grains. The
statistical properties ofφ must be related to the microstructure statistics of the material.
Therefore, screens are designed accordingly to the statistical properties of the random wave
number in equation (1). In that way it would be possible to calculate the second order moment
of the field from two points of view. The random functionφ is shifting the phase of an incident
field v an amount ofφ = kR

2

∫ ∆z
0 µ(ρ,ζ )dζ , see [6] and references therein, whereµ is a

Gaussian zero-mean random function and cross-correlationΓµ . In the forthcoming sections
we use knowledge ofΓµ to produce random screens which allows us to simulate ultrasonic
field in a random medium. We also assume that ultrasonic waves propagating over the surface
of a polycrystalline material can be described by the stochastic Helmholtz’s equation which
is the basic equation for scalar waves in inhomogeneous random media.

∇2u+k(r)u = 0 (1)

herek = ω/vR(r) and is being modelled ask(r,ξ ) = kR(1+ µ(r,ξ )), wherevR(r) is the
velocity and µ is defined above. The relationship between the approximate solution to
equation (1) and phase screen theory will be shown. The second order moment or coherence
function will be obtained in a separate section as the solution to stochastic equation (1) needs
careful explanation. In order to use a phase screen approach the region of interest where the
wave is being propagated can be thought of as being divided into several layers of thickness
∆z embedded in a homogeneous medium. Each layer represented by a phase screen which
randomly shifts the phase leaving the amplitude unchanged. Expanding the acoustic field into
plane waves using the angular spectral representation, the acoustic field through a random
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screen can be expressed by a random operator defined as

Θφ ,z[v] =
∫

[
1

2π
v(p)⊗ s(p)]H(x,z−z0 : p)dp (2)

wherev,s denotes the Fourier transform ofv,s= eiφ respectively. Here,H = exp[ikz
√

1− p2]
and is a deterministic function acting as a propagator anda = 1

2π
v⊗ s which is the angular

spectrum ofv(x)eiφ(x). Let us divide[0,z] into n layers of thicknesszn, wheren is the number
of screens. As a result simulation of aberrations can be carried out by using iterativelyΘ, that
is Θφ ,z[v] = Θφ ,z[· · ·Θφ ,z2[Θφ ,z1[v]] · · · ] or

Θφ ,z[v] =
∫

a(q0)
n

∏
0

H(q j ,
z
n
)

n−1

∏
0

s(q j+1−q j)exp[ikqnx]dq0 · · ·dqn. (3)

z′s indicates the position each screen is being allocated in space. Equation (3) represents the
acoustic field in a random medium and it will serve as a basis to calculate the coherence
function. Equation (3) is a multiple integral and we have as many integrals as screens used
for the simulation.

By making use of equation (3) it is possible to propagate the coherence function of a
plane wave. From now on we distinguish between the coherence function calculated from
the phase screen approach, denoted byΓΘ[v], and the second order moment ufU satisfying
equation (1), denoted byΓu. The coherence function of the source is denoted byΓ0.

In principle, it is possible to propagateΓ0 through one layer and say what exactlyΓΘ[v]
is after one screen by directly calculating〈Θ[v]∗(ρ)Θ[v](ρ ′)〉. In fact, it would be possible
to expectΘ[v] to be transversally stationary, that is to sayΓΘ[v](x−x′,z) is a function of
τ = x− x′ only if the incident fieldv and screensφ are independent in a probability sense.
To compute the coherence function at arbitrary points(x,z), (x′,z) we have numerically
implemented expression (3) and use that information to get the average coherence function.
We have an expression forΓΘ[v] but it was not included in this paper.

PROPAGATION OF CORRELATIONS

Starting from (1) in the parabolic version it is possible to derive a differential equation
for the moments of arbitrary order. One important case of this derivation is the second order
momentΓu = 〈u(x1,z)u∗(x2,z)〉 and it can be shown [3, 2], to satisfy the differential equation

[ikR
∂

∂z
+

∂ 2

∂u1∂u2
+

ik3
R

4
B(u2)]Γu(u1,u2,z) = 0 (4)

whereB(x1−x2) = T(0)−T(x1−x2) andu1 = 1
2(x1 +x2),u2 = x1−x2.

Equation (4) is an ordinary differential equation and its solution can easily be found
if statistical properties forµ are assumed and initial conditionΓ0=〈v(x)v(x′)〉. The method
to derive equation (4) is to implicitly assumeµ to be Gaussian function as the Novikov’s
formula requires [2]. This formula is the principal ingredient in the derivation of equation
(4). Additionally µ has to be assumedδ -correlated in the direction of propagation, that is to
say, the correlation function ofµ has the formΓµ = δ (z− z′)T(x− x′). In two dimensions
and if µ is an isotropic random function,T andΓµ are related byT(τ) = 2π

∫
Φµ(w)eiwτdw

whereΦµ denotesµ spectral density. Thus, ifΓµ = 〈µ2〉e−
τ2

a2 thenT(τ) =
√

πa〈µ2〉e−τ2/a2
.

The definition ofT involves two parameters mainlya,〈µ2〉 and also the distancez, where
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FIGURE 1. (a) Γu through inhomogeneous media. (b) Transverse coherence function of image in (a) at the
source and at certain distance away form the source.

a is the coherence radius,〈µ2〉 is a degree of inhomogeneities, respectively. By looking at
the general solution to equation (4) we realise that because of the form ofT(τ), Γu will
be independent ofu1. It is therefore wise to assume from the beginning that∂ 2

∂u1∂u2
= 0; In

other words, it can be assumed that the acoustic fieldu is expected to be a stationary random
function. Thereby it is possible to write down a solution for equation (4) in the following
form

Γu(τ) = Γ0e−
π2

λ2 z(T(0)−T(τ))
. (5)

Hereλ is the wavelength of the acoustic field and Figure 1(a) shows an image ofΓu.
The important point in this section is the decay and width of expression (5) which can be
seen represented in Figure 1(b), which showsΓ0 and how it decays away from the source in
inhomogeneous medium. The decay is ruled bya and〈µ2〉 which are chiefly the ingredients
for microstructure description. Therefore, the relationship between the coherence function
of the field (function that we can measure) and microstructure can be established in simple
mathematical expressions in this approximation.

The important value here is〈µ2〉 which depends on the degree of inhomogeneity and it
is related to general behaviour ofΓu. This asymptotic behaviour is one of the features that the
autocorrelation of the acoustic surface field measured from real samples of material shares
with this description of ultrasonic propagation. The radiusg is defined as the solution to [6]

k2z
4

T(0)(1−e−
g2

a2 ) = 1. (6)

The radiusg is where the functionΓu takes small values forτ > g.
Conversely, given the radius of the fieldg it is possible to obtain the grain size if an

approximation forT is used . Specifically, ifT(g)≈ T(0)(1− 1

1+ g2

a2 + g4

a4

) then substitution of

T(g) in (5) leads to a polynomial equation ina of degree 4 with coefficients ing which can
be solved. This calculation may be useful if can be established that the coherence radius of
the measured field is truly proportional to grain size. The coherence radius of the field is a
quantity that can be measured using the O-SAM instrument.

SIMULATION

In order to simulate aberrations or to generate samples ofΘφ [v] we generate samples
of the ensembleφ . Taking our definition ofφ we can generate samples from knowledge
of the correlation functionΓφ . Samples forφ can be built up in the following way, let
φ =

∫
c(ω)eiωtdω be its Fourier representation for every element in the ensemble where

c(ω) =
√

Sφ (ω)W(ω), W is white noise process andSφ the power spectrum. Having defined
thec’s in that way, it is straightforward to corroborate thatΓφ (τ) = F [Sφ ]. W being white
noise means thatW is a Gaussian process with correlationΓW=δ (ω −ω ′). W can be easily
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FIGURE 2. Simulation of aberrations in inhomogeneous and homogeneous media (a) and (b), respectively.
(a) is a single realisation generated using expression (3). The parameters used for the simulation area = 60µm
(grain size) and〈µ2〉= 0.029 (or 25% velocity variations within the grain). They are roughly corresponding to
aluminium. (c) Image of the autocorrelation function calculated numerically from realisation in (a). Averaging
those functions we will eventually getΓΘφ [v] as an average limit function. (d) Comparison of a transverse cross
section ofΓu(τ) and autocorrelation function in (c).

produced numerically. Therefore, in this way, the samples of a random function with known
power spectrum are built.

As a consequence, samples forΘφ [v] can be plotted as it can be seen in Figure 2(a).
At this stage we have several ways to obtain the coherence function of the field. Once
the realisations ofΘφ [v] has been generated over the ensemble ofk(r,ξ ) we can calculate
the autocorrelation function for a single realisation ofΘφ [v]. Figure 2(a) shows a simple
realisation ofΘφ [v](ρ)Θφ [v](ρ ′) numerically obtained from a single realisation ofΘφ [v].
Averaging those functions gives an idea of the mean correlation function with respect to
Γu when performing the ensemble average〈Θφ [v](ρ)Θφ [v](ρ ′)〉. If the number of averaged
realisations goes to infinity the ensemble average〈Θφ [v](ρ)Θφ [v](ρ ′)〉 will converge toΓu.
In different words, under same statistics conditionΓΘφ [v] and Γu are essentially the same
function, compare Figure 1(a) and Figure 2(c). We are also plotting the transverse functions
of Γu andΓΘφ [v] away from the source. The graph shows that they are essentially the same.

EXPERIMENTS

The experimental work was carried out in a square piece of aluminium of 30mm×30mm
in dimension. The source and detector were positioned at different locations across the
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FIGURE 3. (a) Experimental amplitude distribution of the acoustic field of a plane wave travelling in a piece
of glass. As glass lacks of grains therefore we get a diffraction pattern (b) Amplitude distribution for aluminium.
The amplitude breaks up as the ultrasonic wave travels through the grains producing a speckle patterns. Both
images (a) and (b) were obtained with the O-SAM instrument.
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FIGURE 4. Mean coherence function measured on aluminium. This image was obtained by averaging the
autocorrelation function over fifty measured speckle patterns on aluminium using the O-SAM instrument.
Notice the similarity with Figure 2(c).

whole surface to build up an ensemble of the acoustic field. The autocorrelation function
was then calculated for every realisation and ensemble average was obtained numerically
to get the mean coherence function for aluminium. The c-scan has been done using the
optical acoustic microscope (O-SAM) to detect surface waves. Therefore, with the aid of
O-SAM instrument it is possible to show experimental evidence that inhomogeneities or
grains cause wave distortions or aberrations to elastic waves. Figure 3(a) is an example of a
plane wave propagating from left to right in a homogeneous medium (isotropic glass without
inhomogeneities) resulting into a diffraction pattern. Figure 3(b) shows the field amplitude
distribution under similar experimental conditions as in (a) but the material is aluminium
instead of glass. The amplitude breaks up due to aberration caused by the grain structure.
The statistical analysis of speckle pattern obtained is expected to provide some information
about microstructure. The size of the grains is proportional to the size of the speckle which
correspond to the width of coherence function indirectly calculated from the mean coherence
function of the acoustic field in Figure 4.

Some assumptions have to be made for statistical description of the measured speckle.
The random function being measured is statistically stationary if not isotropic, i.e. that its
transverse autocorrelation function depends on one parameter only. In practise, it is believed
that the transverse autocorrelation function will be enough to estimate grain size distribution.
Since second order moments or autocorrelation function say how correlated or uncorrelated
two points in space are, so the half-width of the transverse autocorrelation will be sufficient to
know the grain size. The Figure 5 isΓu(τ,z) against the experimental transverse correlation
of the function in Figure 4. The three graphs show the functions atz=0µm,z=5000µm and
z=8900µm, respectively away from the source.

CONCLUSIONS

We have presented a numerical and an analytical technique to interpret aberrations of
ultrasonic waves caused by the microstructure in polycrystalline material like aluminium.
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FIGURE 5. Measured transverse coherence function against theoreticalΓu at three different locations away
from the source in a piece of aluminium. The dotted line represent measurements and continuous lines represent
theory (Γu).
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The experimental and theoretical coherence functions have been compared to show that they
agree well in the width of central peak, which is proportional to grain size. The coherence
function of phase screen theory and stochastic Helmholtz’s equation turned out to be physi-
cally equivalent. Those two fold approximations allowed us to simulate ultrasonic aberrations
due to presence of grains in materials. To give a fairly simple relationship between ultrasonic
aberration and grain size. One disadvantage of parabolic approximation is that it neglects
backscattering. It seems that there is no way in incorporating backscattering whilst keeping
the analytical point of view. The study has to be reviewed to include this process and also
more complicated grain structure.
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