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Materials that consist of a random microstructure can affect ultrasonic measurements—reducing
signal strength, increasing noise, and reducing measurement accuracy—through scattering and
aberration of the acoustic field. To account for these adverse effects a phase screen model, alongside
the stochastic wave equation, has been developed. This approach allows the field and study
aberrations to be modeled from a statistical point of view. Experimental evidence of aberration and
statistical properties of the measured acoustic field are shown. A measured correlation function of
the acoustic field is interlinked to mean crystallite size by using a theoretical coherence function that
can be mainly described by the correlation length and wave velocity variation of microstructure. The
estimation of the mean crystallite size using this technique would provide some insight into material
characterization. © 2007 Acoustical Society of America. �DOI: 10.1121/1.2431582�
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I. INTRODUCTION

It is well established that the properties of materials are
dictated, to a great extent, by their crystallite structure. Crys-
tal refining is a popular practice to enhance or manipulate the
properties of materials. For example, in aluminum, a fine
equiaxed microstructure leads to benefits such as less shrink-
age, reduced porosity, uniform distribution of second phases
and obviously improved mechanical properties which are
uniform throughout the material. Moreover, it facilitates sub-
sequent processing. To characterize the crystallite structure
nondestructive methods are valuable tools to assess the qual-
ity of materials and predict mechanical behavior. In this pa-
per the effects of wave-front distortions on ultrasonic surface
acoustic wave �SAW� propagation produced by crystallites
of polycrystalline materials is studied and used as a means of
gathering information about the microstructure itself. The
technique is at an early stage and does not provide a means
of estimating crystallite size distribution but it does give a
measure of mean crystallite size since this can be estimated
based on the coherence of the acoustic field. These effects,
generally speaking, will be termed ultrasonic aberrations.

There exist in the literature several techniques for mea-
suring the crystallite size. The microstructure itself is as-
sumed to have certain statistical properties, from which it is
theoretically possible to calculate the acoustic first moment
and in consequence an attenuation coefficient which is pro-
portional to mean crystallite size.1,2 The mean crystallite size
is directly related to a correlation length that defines a ran-
dom medium that idealizes real microstructure. The energy
correlation of the acoustic field is dependent on the correla-
tion length of the medium. So it is indirectly possible to
obtain mean crystallite size. A good deal of theoretical and
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experimental work related to second-order moments and
crystallite-noise scattering of acoustic field has been
reported.3–5

The paper is organized as follows. Section II looks at
some aspects of ultrasonic propagation in materials. The
theory is based on the stochastic wave equation for random
media alongside a phase screen model. This approach allows
us to approximate the field in a random medium, therefore
propagation of the energy correlation function developed in
Sec. III, which is later used for obtaining microstructure
characteristics. A set of experiments was performed on three
different samples of aluminum, each with a different crystal-
lite size. This experimental work is presented in Sec. IV
which describes the experimental procedure �including in-
strumentation� for collection of the ultrasonic information
necessary for statistical analysis of the measured aberrations.
In Sec. V the analysis is explained using an estimated trans-
verse energy correlation function of the field. We have also
included in this section simulation of acoustic propagation in
a random medium to further support the analysis. This mea-
sured correlation function is compared in the last section to
the modeled function outlined at the beginning of the paper,
so that we can check its consistency. It is believed that the
technique will be useful for material characterization as it is
possible to relate the aberration strength to the mean crystal-
lite size of the material.

II. THEORY

There exist several theoretical approximations of acous-
tic wave propagation, for both SAW or bulk waves in poly-
crystalline materials. Some authors have tried to reduce the
problem to a scalar description,6 using integral techniques or
even more complicated methods where the first moment is
calculated for certain types of linearly elastic solids.7 In this
paper the theoretical description of ultrasound in an inhomo-

geneous medium is based on the stochastic wave equation in
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two dimensions, Eq. �2.1�, and a phase screen model widely
used in optics and atmospheric calculations.8,9 Surface
acoustic waves in homogeneous materials can be described
fairly well by Eq. �2.1�.10,11 It will be seen that this descrip-
tion can be approximately extended to a heterogeneous me-
dium. For that purpose, the ultrasound is assumed to be
monochromatic, that is U�r�=u�r�e−i�t which then leads to
Helmholtz’s equation for u:

�� + k̄2�u�r� � − k̄2��r�u�r� ,

u�x,0� = v�x� , �2.1�

where k2�r�= k̄2� c̄
c�r� �2= k̄2(1+��r�), � is a zero mean Gauss-

ian process characterizing the inhomogeneity of the medium,
and r= �x ,z�. The mean velocity c̄ here refers to the Rayleigh

wave velocity in aluminum. The variance �2= ��k− k̄�2� / k̄2

measures the random fluctuation with respect to the mean

wave number k̄. The function v�x� is the initial normal dis-
placement, at the plane z=0 so Eq. �2.1� would give the
normal displacement.

The calculations of first and second moments of Eq.
�2.1� has been the subject of several papers. The second-
order moments are related to the energy correlation as they
coincide under stationary conditions. In this section an ap-
proximate representation for the acoustic field is given with
the aim of calculating the energy correlation function; this
function is similar to the one given in Refs. 12–14, for ex-
ample. The propagation of v is performed by dividing the
space into layers of thickness �z, as shown in Fig. 1, where
only half-space is depicted. The acoustic field is then ap-
proximated within each layer using equation Eq. �2.1�. The
thickness �z is taken to be of the order of the correlation
length of k�r�, although the suitability of this choice is not
mathematically established in this article.

In order to quantify aberrations or wavefront distortions
of the acoustic field, forward scattering only will be consid-

ered. This can be done by making the substitution u=eik̄ze�,
where � is an unknown function to be determined. This
leads to parabolic or paraxial approximations of Eq. �2.1� for

15,16

FIG. 1. Schematic representation of ultrasonic propagation in a random
medium using phase screen theory.
�, which accounts only for forward scattering. The func-
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tion � accounts for amplitude and phase variations of the
field within a random medium. However, in this article, an
alternative method is used to account for amplitude and
phase variations of the field u based on a phase screen
model. In the general case, � is a more complicated function
and related to � in Eq. �2.2� but is not discussed in this
paper.

The use of a phase screen model to approximate solu-
tions to Eq. �2.1� has long been established.17–19 The model
is stated here with no theoretical analysis but is used to ap-
proximate the correlation function of the field. The phase
screen model is directly related to solution of the parabolic
version of Eq. �2.1� using continual path integrals;8 this is
perhaps the formal justification of this model.

The phase screen model states that if the inhomogene-
ities do not significantly bend rays with respect to the axis of
propagation z, the field within a layer can be approximated
by the field in free space and a random screen. This approxi-
mation is only valid for weak inhomogeneities or for short
path lengths. As a consequence of this approximation the
amount of phase change � that an incident field v to a layer
of thickness �z would experience is given8,19,20 by

��x� =
k̄

2
�

0

�z

��x,z��dz�. �2.2�

Thus, the integral in Eq. �2.2� is adding all contributions in
phase change that the field would experience along propaga-
tion within a layer of thickness �z. This is an approximation
since in reality points belonging to wavefront will not follow
straight lines, so the integral in Eq. �2.2� will have to be
changed to a continual integral.8

Let us assume that the screen, which mathematically
takes the form of a complex number as ei�, is located at
distance z, which will be the entrance of one layer, then the
field behind the screen is given by

u�x,z� = v�x�ei��x�. �2.3�

The next step is to propagate u in free space to the exit of the
layer, which is from z to z+�z and is given by Eq. �2.1� with
�=0 and initial condition u�x ,z�. It is well known that the
solution to that problem is given by a plane wave
expansion,21 which is presented below. It has been assumed,
in writing Eq. �2.3� that entrance of the layer is located at an
arbitrary point z�0, thus the limits of integration in Eq. �2.2�
should be from z to z+�z. For simplicity let us assume that
the screen is located at z=0 then the initial field will be
u�x ,0�=v.

Equation �2.3� indicates that the forward field, at the exit
of the layer, is equivalent to the background field phase
shifted by �. If the screen is in the middle of the layer, v is
propagated to �z

2 in free space, phase shifted by ei�, Eq. �2.3�
and then free space propagation is again applied up to �z.
The propagation and the phase shifting is performed in the
spatial frequency domain. So if v̂�p� denotes the Fourier
transform of v�x� with respect to x, the solution to Eq. �2.1�

21
with �=0 is given by
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ufree	x,
�z

2

 = �

−�

�

v̂�p�h	p,
�z

2

eipxdp , �2.4�

where h�p ,z�=exp �izk̄�1− p2

2k̄2
�� and p is a variable denot-

ing spatial frequency. We are temporally denoting the
field u in free space by ufree to differentiate it from the one
in Eq. �2.5� in a random layer. Taking the Fourier trans-
form of Eq. �2.3� with respect to the variable x and using
Eq. �2.4�, and reverting back again to the spatial domain
by performing the inverse transform gives the representa-
tion of u in a random layer as follows:

u = �
−�

� �v̂�p�h	p,
�z

2

 � ŝ�p��h	p,

�z

2

eipxdp . �2.5�

Here � is the convolution operator of two functions and v̂, ŝ
denote the Fourier transform of v, s=ei�, respectively. No-
tice, that u in �2.4� and �2.5� is written in the paraxial version

by making the approximation k̄2− p2� k̄�1− p2

2k̄2
�, which

comes from an exact solution to Helmholtz equation in
free space.21 This approximation is used with the calcula-
tions on the correlation function since integrals involving
quadratic terms can be performed under suitable condi-
tions. A special case of Eq. �2.5� is �=0, which results in
Eq. �2.4� as expected. Equation �2.5� represents the ultra-
sound propagating through an inhomogeneous layer which
has been approximated by distorting the phase of its el-
ementary components by �.

To extend the propagation to larger propagation dis-
tances than �z, Eq. �2.5� is applied recursively to an arbitrary
number of layers. So, for instance, since �z is the thickness,
un indicates the field at z=n�z away from source, where n
=1, . . . ,N, and N is the number of screens within 0 to z
=N�z. Replacing un for v and using pn+1 instead of p as the
dummy variable in expression �2.5� one can see that the field
at the exit of the nth layer in the spatial frequency domain is
given by

ûn+1 = �ûn�pn+1�hpn+1
� ŝ�pn+1��hpn+1

= hpn+1�
−�

�

�ûn�pn�hpn
ŝ�pn+1 − pn��dpn, �2.6�

where hpn
=h�pn , �

2
� and the convolution operator has been

replaced by its definition. Here, also u0=v as a special case.
Back substitution of the recursive definition for un in

expression �2.6� shows that the total field u=un+1 at an arbi-
trary point in space r= �x ,z� can then be written as

u�x,z� = �
−�

�

¯ �
−�

�

v̂�p0��
j=0

n−1

hpj

2 ŝ�pj+1 − pj�

	 hpn
eipnxdp0 ¯ dpn. �2.7�

Equation �2.7� represents the ensemble of the acoustic field
in a random medium and it will serve as a basis to calculate
the energy correlation function. It is a multiple integral and
there are as many integrals as there are screens within the
slab, however, it is computationally efficient as these can be

implemented using the fast Fourier transform �FFT� algo-
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rithm. Equation �2.7� represents a SAW traveling in the for-
ward direction in the half-space �x ,0
z�. The above proce-
dure can be applied to propagate the initial displacement v in
the other direction by using the symmetry of the Green’s
function for the Helmholtz equation. The acoustic field is
statistically symmetric with respect to axis z, so only half of
it will be considered. We have only measured half of the
acoustic field in the experimental work, although it is pos-
sible to image SAW in both directions.

The amplitude of a realization numerically implemented
from Eq. �2.7� is shown in Fig. 2. It is a truncated acoustic
plane wave propagating in simulated inhomogeneous me-
dium characterized by �=0.02 according to Eqs. �2.1� and
�2.7�. As the wave travels from left to right �z direction� the
phase is being altered by screens placed to simulate the ab-
erration caused by real microstructure. The overall phase is
distorted as well as the amplitude distribution breaking up as
it can be seen in Fig. 2. This spread is a typical situation of
acoustic surface waves in real experiments. This simulated
acoustic field, however, is not expected to follow precisely
all wave paths that one would expect to follow in real ex-
periments, such as that shown in Fig. 6. Their similarities are
assessed by looking at their statistical properties.

III. PROPAGATION OF ENERGY CORRELATION

The source v can be nonstationary or a wide sense sta-
tionary random function. The energy correlation function of
a random function is used to measure the strength of aberra-
tion and it has the following definition:

�v��� = �
−�

�

v�x�v�x + ��dx , �3.1�

where �=x−x� and x, x� are two arbitrary points in the trans-
verse axis. It is well known that under stationary conditions
the average �v is infinite. In this case it is meaningless to
consider Eq. �3.1�; instead, the power correlation function,
limX→�

1
X�−X

X v�x�v�x+��dx has to be considered. Statistical
properties of the medium are crucial in this discussion.
Real materials can have very complicated microstructure,
so an approximate description is potentially susceptible to
large errors. Crystals can in general be considered as ran-
domly distributed spatially with preferred or random ori-
entation, and macroscopically the material can be isotro-
pic or anisotropic. “Randomly distributed” or just
“randomly” is being used here as a generic word; so the
spatial arrangement of crystallites may follow any prob-

FIG. 2. Amplitude distribution according to Eq. �2.7�. The simulation is
based on real parameters and a numerical procedure. This can be compared
with the experimental amplitude distribution shown in Fig. 6.
ability distribution. Here, for theoretical simplifications
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the sample is considered as being composed of randomly
oriented scatterers which are either isotropic or weakly
anisotropic. This is a restrictive approximation but it ap-
pears to be justified as it explains many of the observed
phenomena. Another important point is the crystallite
shape, which can be described based on the scale length l.
This length explicitly describes the form of correlation
�

k
= �k�r�k�r���, which also fully describes �. A single

model is being used which characterizes � statistically in
terms of � and l. This is a fair representation of metals
with equiaxed crystallites whose spatial distribution can
be described by an isotropic random process. Complex
structures such as an inhomogeneous crystallite size
distribution—elongated crystallites—will require a more
sophisticated model. Microstructures with elongated crys-
tallites in a preferred direction can experimentally be in-
vestigated by propagating ultrasound in multiple direc-
tions. The above assumptions can be summarized by
saying that � can be taken to be an isotropic process as a
good approximation to describe microstructure for the
polycrystal used in the experimental work. Under this
condition the correlation function for � can take any form
as long as it is a function through its difference, that is
��=�

2
f��r−r� � �, f is a suitable function, and �r−r��2= �x

−x��2+ �z−z��2. In the literature1,15 the function �
�

=�
2
exp�− �r−r��2

l2 � is extensively used and has been shown to
be accurate in some applications.15 Regardless of the ge-
ometry for the boundary problem Eq. �2.1�, isotropy in
both directions is simply establishing that wave velocity
variations between grains can be modeled based on a sta-
tionary process with exponential correlation in both direc-
tions. This is assuming that velocity variations can be
measured in a sample big enough or infinite in both direc-
tions.

Let us calculate the mean of the squared difference of
the phase, that is ����x�−��x���2� at two arbitrary points x
and x� using relation Eq. �2.2�. In doing so by using the
exponential form for ��, the correlation function C�

= 1
2 ����x�−��x���2� follows as

C� =
k̄2

4
�

0

�z �
0

�z

����x,z� − ��x�,z���2�dzdz�

=
k̄2�2

4
�1 − e−�2/l2��

0

�z �
0

�z

e−�z − z��2/l2dzdz�

=
k̄2

4
l�2�z�1 − e−�2/l2�erf	2�z

l

 , �3.2�

where erf denotes the error function and �=x−x�. erf can
be ignored as a good approximation providing �z� l or
�z� l which gives erf�2�z / l��1. Under these circum-
stances the calculation of C� is equivalent to assume from
the very beginning that � is delta correlated in the z di-
rection or that the correlation of � takes the form ��

=�2exp�−�2 / l2���z−z��. Using this correlation function,
the calculation of C� leads exactly to Eq. �3.2� with
erf� 2�z

l
� replaced by 1, which will be used to calculate the
correlation function of the field.
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The energy correlation function of the field is transver-
sally calculated for each propagation distance. Thus, by de-
noting the correlation function of the field by �u, which is the
ensemble average �u�x ,z�u*�x� ,z�� of the field for each
propagation distance z, the explicit expression of C� will
allow us to explicitly write �u.

In general, un may be statistically related to � for a
single layer, because as v propagates from layer to layer un

depends on �. It will be shown that it is possible, at least
mathematically, that the energy correlation of the field can be
calculated if the medium is statistically independent of the
incident field. Hence, based on those approximations, the
expression for the energy correlation function at the entrance
and exit of a region are simply related by

�
u

= �
v
���e−NC�, �3.3�

where C� is given in Eq. �3.2�. An example of the energy
correlation over a distance corresponding to several crystal-
lites, as calculated according to Eq. �3.3�, is illustrated in Fig.
3. The decay and width as it propagates is determined by �
and l, respectively. The extreme case is for a highly aber-
rated medium, that is, �→1 and small l—small
crystallites—then Eq. �3.3� decays rapidly having a narrow
tail. The ideal case occurs when �=0, that is homogeneous
medium, so Eq. �3.3� does not change with propagation dis-
tance.

To show that the last expression is valid in this approxi-
mation, Eq. �2.7� will be considered by transforming it to the
spatial domain.21 For that purpose, an independent coordi-
nate is attached for each screen. Therefore, let x
= �x0 , . . . ,xn� be that coordinate system. So if
�0�x0� , . . . ,�n�xn� denotes the phase variation at each screen,
then one can define the correlation function at each screen as
C��xs ,ys�= ���s�xs�−�s�ys��2�. Recall that � is isotropic so
Cs is a function of the difference �s=xs−ys. Let us also con-
sider the product of screen defined as s�x�=ei�s�s�xs�. Now
the Green’s function in the paraxial approximation of Eq.

�2.1� is given by g�x−x� ,z�=k̄ /2zei�k̄/2z��x−x��2
then the

propagator in several variables is simply

G�x,z� = �
j=1

n

g�xs
−,zs

−� , �3.4�

where xs
−=xs−xs−1 and zs

−=zs−zs−1.
Recall that one wants to calculate the transverse corre-

lation of the field, i.e., �u�x ,x� ,z�= �u�x ,z�u*�x� ,z�� at dis-
tance z from the source, thus one has to take the ensemble
average Eq. �2.7� in the spatial domain. In order to do that let

*

FIG. 3. Image of the energy correlation propagating in a random medium—
z direction—with parameters �=0.02 and l=150 �m, Eq. �3.3�.
us make H�x ,y�=G�x ,z�G �y ,z� and define the ensemble av-
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erage of vs as f�x ,y�= �v�x0�v�y0���s�x�s*�y��; the ensemble
has been split because v and s are statistically independent.
Thus the ensemble average �u�xn�u*�yn�� using Eq. �2.7� is
given by

�u = �
−�

�

¯ �
−�

�

f�x,y�H�x,y�dxdy �3.5�

which can be shown to lead to Eq. �3.3�. To be able to
integrate Eq. �3.5� one would need to calculate the average f
but this is not necessary as long as f is a function of the
difference x−y only. This is a consequence of � being
Gaussian and an isotropic process. Thus, using a standard
result in Gaussian multivariate statistics21 f takes the form

f = �v�x0�v�y0��e−�s=1
N C��xs−ys�. �3.6�

To continue the evaluation of integral Eq. �3.5� more
notation is introduced to shorten the length of the equations.

Let �s
−=

2�zs−1−zs�

k̄
and rs= �xs−xs−1�2− �ys−ys−1�2 with obvious

definition in vectorial form. Then Eq. �3.5� can be rewritten
as

�u = b�
−�

�

¯ �
−�

�

f�x,y��
s=1

N � exp�− i
rs

�s
−�

�s
− �dxdy , �3.7�

where b= �− 1


�N. A further step in calculating the above inte-
gral follows by making the following change of variables:
2x=p+q, 2y=q−p, therefore rs= �ps− ps−1��qs−qs−1� or rs

= ps
−qs

−. Thus, �u in the new coordinate system is

�u = b�
−�

�

¯ �
−�

�

f�p,q��
s=1

N � exp�− i
ps

−qs
−

�s
− �

�s
− �dpdq .

�3.8�

Now, using that Eq. �3.6� depends only on the difference of
its coordinates, therefore f would be a function of p only, we
can perform integration with respect to q. Recognizing that
the function to be integrated is the Fourier transform of the
identity, this results in a product of delta functions. But first,
let us express the term appearing inside the exponential func-
tion as

− i
ps

−qs
−

�s
− = i�

s
� ps

−

�s
− −

ps+1
−

�s+1
− � �3.9�

with p1
−= pn+1

− =0, since we have added extra terms for con-
venience. After inserting Eq. �3.9� in Eq. �3.8� and perform-
ing integration with respect to q, except for the single vari-
able q0, we have

�u = �
−�

�

f�p,q0��
s=1

N

�s
−�	ps

− −
�s

−ps+1
−

�s+1
− 
�

s=2

N
1

�s
−dpdq0,

�3.10�

where � is the delta of Dirac. In the above expression N is an
even integer otherwise one would have to multiply the term

N
on the right by �−1� .
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Finally integration can be completed by noting that if
�s

−=�s+1
− for all s, i.e., all screens are allocated at equal

distance in space then we have

f�pN
� ,q0��

s=2

N

�s
− = �

−�

�

f�p,q0��
s=1

N

�s
−�	ps

− −
�s

−ps+1
−

�s+1
− 
dp .

�3.11�

Here, pN
� = �pN , . . . , pN�. The final expression for �u is ob-

tained by inserting Eqs. �3.6�, �3.9�, and �3.11� into Eq.
�3.10�. In doing so

�u = e−NC��pN��
−�

� �v	 pN + q0

2

v*	 pN − q0

2

�dq0

= e−NC��pN��v�pN� �3.12�

which is equivalent to Eq. �3.3� with pN=�. The above cal-
culations show that the energy function at distance L is
equivalent to the product of individual energy functions at
the exit of each layer. Letting N tend to � in Eq. �3.3�, �u

approximates to a continuous solution of the second-order
moment of the Helmholtz’s equation. An approximate solu-
tion for the second-order moment of Eq. �2.1� is given in
Ref. 12 and closely coincides with �u. An expression for the
coherence function of the backscattering field is also given in
that paper.

IV. MEASUREMENTS

A. The O-SAM instrument

Over the past few years an optical scanning acoustic
microscope �O-SAM� has been developed.22 This highly
flexible instrument can be fully automated and is capable of
performing multiple acoustic measurements over the surface
of a sample. A complete set of software and electronics has
been developed for gathering information at high speed.
Typically, an amplitude and phase c-scan over an area of
1.5 cm	1.5 cm with a resolution of 10 �m takes a few min-
utes. Advantage has been taken of these capabilities and the
O-SAM was used to build up an ensemble of the acoustic
field over the surface of an aberrating material. The main
components of O-SAM are shown in Fig. 4. It uses a
Q-switched mode-locked Nd-YAG laser for SAW genera-

FIG. 4. O-SAM, the optical scanning acoustic microscope. A pattern gener-
ated by a spatial light modulator is imaged onto the sample using a pulsed
laser. This pattern acts as the source of the surface acoustic waves. The
waves are detected by another laser, using the optical beam deflection tech-
nique.
tion, by using a spatial light modulator �SLM� to image any
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desirable pattern—typically a set of arcs or straight lines—
onto the surface of the material under investigation. This
image, illuminated by the pulsed laser, acts as the source of
the surface waves. The fundamental frequency at which the
O-SAM generates ultrasound is 82 MHz, but multiples of
that frequency can also be generated. A second continuous
wave laser was used to detect the propagating surface waves
using an optical beam deflection technique. Both the detec-
tion system and the sample are mounted on computer-
controlled automated stages, and so the O-SAM is capable of
rapidly imaging the propagating wavefront, at any position
on the sample. A more complete overview and technical de-
tails are given in Ref. 22.

B. Sample preparation

Three different aluminum samples were created, each
with a different mean crystallite size. The procedure is simi-
lar for all of them so only a detailed description for one
sample is described here. An Al �99.9% � charge of 500 g in
mass, contained in a clay bonded SiC crucible, was heated to
730 °C in a muffle furnace. After melting of the Al charge
and in order to obtain a lightly refined Al ingot, 0.2 wt. % of
an Al-Ti-B commercial crystallite refiner was added and dis-
solved into the melt. Prior to removal of the oxide skin from
the surface of the molten metal, the melt was cast into a
rectangular steel mold in which it was allowed to solidify
naturally. The Al ingot was released from the mold and sec-
tioned with a band saw. Due to the geometry of the steel
mold, a coarse columnar crystallite structure is expected in
the top part of the Al ingot. For this reason, that section was
removed and four useful blocks were obtained. Owing to the
symmetry of the ingot, only three blocks were used; one for
the counter part for metallographic characterization and the
third was subjected to macro-etching to reveal the overall
crystallite structure. Samples for metallography were taken
from one block and were mounted, ground and polished
down to 1 �m following standard procedures. The same
preparation was given to the counter face of the other block.
To reveal the crystallite structure, the Al block was repeat-
edly immersed into a solution �38% H2O, 45% HCl,
15% HNO3, and 2% HF� and washed until a good contrast
was achieved. Also, the Al-polished samples were anodized
in a 2% solution of HBF4 in water for 1 min at 25 V.23 After
washing and drying, the samples were viewed and imaged in
an optical microscope, equipped with a digital camera, under
cross-polarized light.

Finally the crystallite size distribution of each of the
three samples was determined by applying open source
software.24 Using the software, the perimeter was measured
for each region contained within each micrograph and stored
in a file for mean estimation. The mean caliper diameter, as
defined in Ref. 25, was obtained by dividing the mean diam-
eter of each region by . The results were approximately as
follows: 1345 �m, 785 �m, and 134 �m for A, B, and C,
respectively. Also Fig. 5 shows the standard deviation and
number of regions considered, �i, Ni where i=A ,B ,C, re-
spectively for each block characterized.
Sample A has a more complicated microstructure com-
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pared to samples labeled B and C. The latter two have ho-
mogeneous distribution of convex crystallites, as can be seen
in the micrographs in Fig. 5. On the other hand A has large
crystallites of a more complicated form. This feature made
samples B and C easy for characterization and ultrasonic
analysis, while A was more difficult.

C. Aberrations in aluminum

Aberrations were investigated in blocks of aluminum of
6 cm	4 cm	1 cm, which gives sufficient room for mul-
tiple measurements since the scanning area is typically
3 mm	10 mm. The SLM was programmed to project a se-
ries of straight lines onto the surface of the sample, each line
separated from its nearest neighbor by a distance equal to the
wavelength of the surface waves at 82 MHz, which is the
fundamental frequency of the excitation laser. This pattern is
used to propagate a plane wave. The propagation resembles a
diffraction pattern through a slit since the SLM has finite
aperture, so diffraction occurs near the edges. Figure 6 is a
typical image of a plane wave propagating from left to right
in an inhomogeneous medium. The wavefront breaks up due
to aberration caused by the crystallite structure, leading to
variations in the amplitude of the wavefront. The statistical

FIG. 5. The first column is the graph for the crystallite size distribution for
each micrograph to the right. The second column shows micrographs of
aluminum with variations on microstructure.
analysis of the speckle pattern obtained is expected to pro-
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vide information about the microstructure. In order to allow
the ultrasound to interact with different sets of crystallites the
ultrasonic source was positioned at different locations, scan-
ning an area of 3 mm	10 mm each time. In this way, ap-
proximately 100 pictures similar to those in Fig. 6 were ob-
tained; this was then used to produce an ultrasonic ensemble.
All of them are different in detail but are assumed to arise
from the same statistical population. Figure 7 is a schematic
representation of the procedure used to make multiple mea-
surements. It is important to highlight that the procedure is
fully automated so it was only necessary to create a script in
order to perform all the measurements.

V. STATISTICAL ANALYSIS

A. Procedure

The discussion is based on statistical concepts such as
the second-order moment or energy correlation function for
finite sequences. Notation will be introduced to explain some
of the concepts and to be able to compare them with the
theory earlier developed in Sec. III. Measurements are being
denoted by Ukl

n as in Fig. 7, so Ukl
n represents any of the

acoustic ensemble measured on block A, B, and C, where
k=1, . . . ,K, l=1, . . . ,L and K, L are determined by the reso-
lution of the measured acoustic field in x, z direction, respec-
tively. The superindex n=1, . . . ,N is to indicate the number
of field measured on each sample. By definition the cross

FIG. 6. Amplitude �top� and phase �bottom� of 82 MHz surface acoustic
waves, propagating on aluminum. The wavefront breaks up as the ultrasonic
wave travels through the crystallites.

FIG. 7. Schematic representation of scanning area and source locations to

build up an ultrasonic ensemble.
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correlation is �Ukl
n Uk�l

n* � where � � denotes the ensemble aver-
age. The estimation of the ensemble average of Zkk�l

n

=Ukl
n Uk�l

n* is rather complicated since there is little statistical
information about Ukl

n . Instead, two different averages will be
performed. By making m=k−k�, Zkk�l can be rewritten as
Zk,k+m,l

n =Uk
nUk+m,l

n* . Since there is a waveform for each m, the
average over k is performed as well as the ensemble average,
leading to

Z =
1

NK
�
n=1

N

�
k=1

K

Zk,k+m,l
n . �5.1�

Z is a complex function so its modulus will be considered,
and it will be termed energy correlation or the autocorrela-
tion function; hence,

�e = �Z� . �5.2�

The subindex e stands for experimental and is used to differ-
entiate it from the theoretical one. The measured autocorre-
lation function �e, implemented numerically, is shown in
Fig. 8. The importance of this function will become apparent
when it is compared to the theoretical �u in Eq. �3.3�, since it
is related to microstructure. Figure 8 shows that the autocor-
relation propagates as an ultrasonic disturbance. The overall
decay of this function is strongly related to aberrations due to
the interaction between the crystallite structure and the ultra-
sound. There are two parameters which are free in Eq. �3.3�,
being � and l which represents the average crystallite size.
An estimation of �, l has been obtained, for cases A, B, and
C by minimizing the following function along propagation
distance:

�2��,l� = �
i=1

K

�
j=1

L

��u��i,zi:�,l� − �e�2. �5.3�

This method of estimating the parameter �, l proved to be
useful only for samples labeled B and C as it will be shown
in the last section.

B. Corroboration of model and statistical analysis
technique

In Sec. III, Eq. �3.3� linked the theoretical statistical
properties of the material microstructure with the autocorre-
lation function obtained from an ensemble of measured
acoustic fields. In order to corroborate the approach of the
analysis of this measured data, the phase screen approxima-

FIG. 8. Measured correlation function according to Eq. �5.2�. This is a
single instance of �e. Averaging over many instances gives �e which re-
sembles the function in Fig. 3.
tion model described in Sec. II was used to simulate a set of
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ultrasonic fields propagating through a simulated aberrating
medium of known statistical properties. Each of the fields
propagated through different simulated crystallite structures,
and their corresponding propagating correlation functions
were combined into an ensemble average as described by Eq.
�5.2�. The statistical analysis described in Sec. V A was per-
formed, and the results for standard deviation ��� and mean
crystallite size �l� were compared to the values used to gen-
erate the ultrasonic fields. The simulations were repeated for
different values of variance and mean crystallite size, and the
results are illustrated in Fig. 9. We are using the symbols ls,
�s for correlation length and standard deviation used in the
simulations, respectively, whereas lb, �b will stand for the

FIG. 9. Subscript s stands for simulation and subscript b for fitted param-
eters according to Eq. �3.3�.
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best values obtained by minimizing �2, Eq. �5.3�, for each
simulation. In Fig. 9, in the left graph, �s is used for the
abscissas as well as the ordinate, that is ��s ,�s�. In the same
box, ��s ,�b� is also being plotted for comparison. So if �s

and �b are the same then the graph will be a straight line.
The same principle applies for the graph on the right where
we are plotting �ls , ls� as well as �ls , lb�. The small squares in
the left graph in Fig. 9 correspond to values of �s whereas
the squares in the right to ls. The black dots correspond to �b

and lb in the same order as before for each simulation.
One hundred different mediums were simulated by feed-

ing the algorithm with ten values for �s and ten for ls, vary-
ing �s from 0.01 to 0.05, and ls from 51 to 512. For each pair
��s , ls�, one hundred fields were generated to be able to have
a good estimation of average Eq. �5.1�. The agreement be-
tween the values used to simulate the random microstructure,
and the values obtained from statistical analysis of the en-
semble autocorrelation functions is good, particularly for the
standard deviation. The spread on the estimated crystallite
size according to Eq. �5.3� needs more careful analysis since
function Eq. �3.3� becomes complicated in that region be-
cause � and l are tightly related, so the algorithm has some
difficulties in identifying the right values, particularly so for
the correlation length.

It should be remembered that the method used to gener-
ate the simulated random crystallite structure and the analy-
sis of the autocorrelation functions are not directly math-

FIG. 10. Comparison of normalized energy correlation
functions �u and �e for samples in Fig. 5. The continu-
ous line �—� is derived from Eq. �3.3� at different
propagation distances, with values of � and l shown in
each graph. The dashed line �- -� represents the correla-
tion function of the experimental acoustic field at the
same propagation distances. The parameters � and l are
within a 20% accuracy.
et al.: Aberrations in materials with random inhomogeneities 1403



ematically related. The simulation has been used in a
previous paper to study the effects of aberration on wave
velocity measurements.26

C. Analysis of experimental data

The main result in this section is the comparison be-
tween theory and the measured autocorrelation function. The
scan area for each picture was taken to be 3 mm wide
whereas the propagation distance was chosen until the ultra-
sonic field became diffuse. In the first case, sample C, the
maximum propagation distance was 2.5 mm for instance, us-
ing steps of 5 �m in the x axis and 100 �m in the direction
of propagation �the z axis�. The experimental data acquired
by the O-SAM instrument was processed in the same way as
the modeled data used at the beginning of this section, and
comparisons are made between the measured ��e� and pre-
dicted ��u� energy correlation functions at various propaga-
tion distances.

Accumulated noise at the central peak of the energy
function gives a very sharp peak affecting the overall decay
of the energy function, and therefore the estimated values of
�, l. The data were filtered assuming a linear model of the
form y1=y2+e where e is a white noise statistically uncorre-
lated to y1, and y2 is data free of noise. When filtered with an
optimum filter the residual is delta correlated, which corre-
sponds to noise. This can be removed with retention of the
desired signal. This very simple model considerably reduces
the central peak due to noise, giving the results shown in Fig.
10.

Figure 10 shows the comparison of the measured ��e�
and predicted ��u� energy correlation functions—where �u is
shown in solid lines—for samples A, B, and C. In each case,
it is shown at three different propagation distances in order to
illustrate the decay of the correlation function with distance.
The dashed lines in Fig. 10 represent the measured energy
correlation function on the samples at the same propagation
distances, derived from the acoustic ensemble in samples A,
B, and C. There is good agreement for samples B and C. The
standard deviation which measures the velocity variations
from crystallite to crystallite used in Fig. 10, for comparison,
is approximately ��0.015 which is a value that one would
expect for aluminum.1

The nonlinear fitting Eq. �5.1�, numerically solved,
gives the following estimation for � and l. �� l�
= �0.011 435 �m�, �� l�= �0.014 678 �m�, and �� l�
= �0.022 163 �m� for samples A, B, and C, respectively. The
estimation of � is reasonable in all cases, however, the esti-
mated correlation length for sample A is significantly differ-
ent from the values obtained visually, which are 1345 �m,
785 �m, and 134 �m as shown in Fig. 5.

Possible reasons for this are as follows. First, due to
mechanical limitations in the O-SAM instrument, the acous-
tic field on sample A could not be mapped in its entirety. This
effectively truncated the available dataset from which an es-
timation could be made. Second, we note that the measured
mean crystallite size �1345 �m� is approaching the width of
the acoustic source ��2 mm�. This is significant, because �e
is influenced more by the acoustic aperture in this case than
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by the correlation length. Finally, as noted in Sec. IV B, the
large crystallites in sample A have a complicated form, in
that many of the crystallites are nonconvex.

VI. CONCLUSIONS

A theory has been developed to relate statistical param-
eters of material microstructure to statistics of ultrasonic ab-
errations. From this relationship it is possible to
investigate—indirectly—mean crystallite size and variance
of the acoustic wave velocity under certain conditions.

Therefore, the technique as a whole may be used as a
tool for material characterization. This technique is particu-
larly suitable for materials that are weakly anisotropic and
the crystallite structure is not very complicated. Also, it
works well if the width of the source is bigger than the av-
erage crystallite size. A phase screen model, alongside the
stochastic wave equation, has been developed to simulate
ultrasound propagating through random media. This model
has been used to corroborate the technique of statistical
analysis of the propagating energy correlation function, and
provides a useful test bed for developing the theory, along-
side the experimental work. The experimental results shown
are in good agreement with the analytic expression for the
correlation function calculated in Sec. III, provided the con-
ditions discussed in the article are met.
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