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AbstratThis thesis is onerned with the propagation of elasti waves in polyrystallinematerials. In partiular, in establishing a relationship between the statistial prop-erties of the wave�eld and the statistial properties of the material via a orrelationfuntion. Here the study of elasti waves has been restrited to surfae aoustiwaves (SAWs), mainly beause they are readily aessible using an optial sanningaousti mirosope (OSAM).Polyrystal materials onsidered as stohasti media exhibit random propertiesat some sale. This generally inludes most ommon engineering materials suh asmetals whih are onstituted by anisotropi regions known as grains. This thesisuses a stohasti model for both mirostruture and wave propagation in polyrys-tals based on the stohasti Helmholtz equation. The main objetive of the modelproposed is to obtain a orrelation theory that best haraterises aberrations inaoustis due to mirostruture in polyrystals. The model has been built upon theexistent theoretial bakground around salar theory for waves in inhomogeneousmedia in order to �nd an expression for the orrelation funtion Γu of the �eld.The interation of SAW and mirostruture is experimentally observed as devia-tions or aberrations of the wavefront by imaging the aousti �eld as it propagates inpolyrystals using the OSAM. The aberrations regarded as random proess are sta-tistially analysed from an ensemble of aousti �elds built upon performing multiplemeasurements on the surfae of a sample, thus measuring a transverse orrelation
Γe. The mean grain size and the orrelation length are onneted through the seondmoment Γk of the wave number. The theoretial model predits that Γu dependsexponentially on Γk. A omparison of Γu and Γe provides a relationship between Γeand Γk, therefore an indiret way of measuring mean grain size. The theoretial-experimental analysis has been supported with simulated aousti propagation onsimulations of grain growth for real mirostruture.
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Chapter 1
Introdution
The researh presented in this thesis is onerned with elasti waves in polyrys-talline materials and the e�et that the materials have on wave propagation. Speif-ially, the interation of surfae aousti waves (SAWs) and materials omposedof non-interseting anisotropi regions or grains, suh as aluminium. The over-all geometri properties, suh as shape and spatial arrangement of grains within apolyrystalline material shall be termed mirostruture.The interation of SAW with mirostruture results in deviations or aberrationsof the wavefront ausing the amplitude and phase of the wave to spread transversallyalong the diretion of propagation. The aberrations or deviations of the wavefrontan also be observed in other types of waves, suh as eletromagneti waves. Forinstane, rays of light entering to the earth emanating from a distant objet, suhas a star, are deviated by the atmosphere [1℄. Aberration of light by the atmosphereis at a very advaned stage of researh ompared to aberration in aoustis. Thereferene [1℄ just mentioned is a review on what is known as Adaptive Optis, whihdeals with the problem of aberrations of light a�eting the performane on ground-based telesopes.In this hapter aousti aberrations are introdued and ompared to methodsused in Adaptive Optis. One thing they have in ommon, is that one wishes to or-ret or to minimise the e�ets aused by aberrations of waves. Many mathematialtehniques in Adaptive Optis an also be applied to explain aberration in aoustis



Introdution 11as disussed later. The temporal and spatial orrelation of light plays a fundamentalrole in adaptive optis [1℄. This would also apply to aousti aberrations as this workdeals with the moments of the aousti �eld. That is, the seond moment of SAWis of great importane in studying aousti aberrations sine it is diretly related tothe spatial orrelation of mirostruture.From the theoretial point of view, aberrations aused by material mirostrutureare studied within stohasti alulus beause of the stohasti nature of mirostru-ture in polyrystalline materials. This, in turn, implies the use of the theories ofelastiity in polyrystalline materials, whih is rather similar to linear elasti theoryfor non-polyrystalline materials.Experimental evidene of aberration in aoustis is demonstrated using an imag-ing system developed at the University of Nottingham. The system is an optialsanning aousti mirosope (OSAM) that fundamentally generates and detetsSAW using lasers for both generation and detetion of SAWs. The OSAM system isapable of performing measurements at many positions of SAW in stohasti media,thus being able to produe an ensemble of SAW. This way, it is possible to statisti-ally assess the e�et that mirostruture has on a SAW travelling in suh medium.As a onsequene of this proedure, it is possible to measure a orrelation funtionfrom the experimental ensemble that quanti�es aberrations.1.1 Bakground and MotivationThe term ultrasound refers in general to sound at high frequenies or above 20kHzwhih is the normal frequeny that the human ear an detet. The experimentalwork is arried out in the high frequeny regime (82MHz) whih is the fundamentalfrequeny at whih the OSAM generates ultrasound. In the theoretial framework,ultrasound an be desribed by the linear elasti theory for solids. This theory pre-dits many types of wavemodes that have a wide range of appliations in industryand/or medial diagnostis. Common wavemodes ould be longitudinal, shear andRayleigh or SAW depending on partiular appliations or boundary onditions. Ul-



Introdution 12trasound and SAWs will be synonymous in this thesis sine the experimental workhas been arried out using SAWs.For instane, in medial ultrasound [2, 3℄ advantage is taken of the satteringproess ourring in tissue, musles, et. to image objets within the human body formedial diagnostis, an example of this, is fetal imaging [4, 5℄. Lamb and Rayleighwaves, in partiular an have a variety of appliations. Lamb waves are useful inloating and sizing �aws in pipes [6, 7, 8℄ as well as in assessing train rails [9℄.Other appliations of Rayleigh waves is the haraterisation of raks on omplexgeometries [9℄. In the area of sensors, aousti-wave devies have gained importanein the design of transmitting and reeiving inter-digital transduers using Rayleighwaves [10℄.Ultrasound is one of the many tehniques that an be used to image objets suhas miro-raks [11℄. Other methods inlude X-ray tomography [12℄, eletromagnetiwaves and radio waves [13℄. The main motivation of this work is to say that aber-ration of SAWs an be used to indiretly extrat information from the medium inwhih the wave is travelling. In the next paragraph, a more preise meaning ofaousti aberrations is introdued.Many engineered materials suh as aluminium are omposed of anisotropi grainswith random spatial orientation. This type of solid is polyrystalline. They an havegrains of di�erent shapes and the degree of anisotropy will depend on the type ofmetal onsidered. The important point at this stage is what happens with SAWspropagating in polyrystalline materials.Let us onsider an experiment whih measures the �eld of a plane wave propa-gating in a polyrystal. As the wave propagates away from the soure, the phaseand amplitude of the wave would experiene hanges due to the anisotropy of grains.The random orientation of grains and the fat that in anisotropi solids the wave ve-loity is highly dependent on angular diretion, is the main ause of those hanges.These hanges an be observed as deviations in the amplitude and phase of the�eld as it propagates from one grain to another in a random fashion. Those ef-fets were observed and postulated to be the ause of errati performane in surfae



Introdution 13wave veloity measurements in [14℄. The e�ets, now known as aousti aberrations,an be observed in polyrystalline materials or in media whih have a random mi-rostruture. As the researh went further it was neessary to systematially studyaberration phenomena sine it beame important for improving the performane ofthe OSAM system. The other reason why aberration beame an interesting subjetis the intrinsi relationship between the statistis of aberrations and mirostrutureof polyrystalline materials. Perhaps, one of the �rst works to appear on this subjetwas [15℄, where the authors took a two-dimensional image of SAW wavefront distor-tions as they travelled in stohasti media. By using an optial beam de�etion[16℄tehnique for deteting small displaements on the surfae of the sample, they wereapable of showing many interesting features inherent to the sample. The mostsigni�ant is that aberrations are learly seen on a piee of titanium using 10MHzRayleigh waves.The aousti aberration an be quanti�ed by a transverse orrelation of theaousti �eld. This in turn is related to the orrelation of the stohasti mediumby means of a salar theory for SAWs. From this relationship, harateristis ofthe medium, suh as mean grain size as well as the degree of anisotropy an beextrated.1.2 Imaging aousti aberrationsThe OSAM system has been used to image and measure the aousti deviations inpolyrystalline materials. The preliminary results presented in this setion were ar-ried out in aluminium. Let us denote the aousti �eld as U(x, z) = A(x, z)eiΦ(x,z),where A denotes amplitude and Φ phase. U is the displaement normal to the planewhere the wave propagates. The san has been performed in the xz plane measuringthe normal displaement point by point. It is a plane wave that propagates from leftto right on the surfae of an aluminium sample, Fig. (1.1). Both the amplitude andphase distributions are shown and it an be observed how the wavefront hangesin both images as the wave propagates away from the soure. Several proesses
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Figure 1.1: The image on top is the amplitude distribution A whereas the image onbottom is the phase distribution Φ of a plane wave at 82MHz, travelling from left toright on an aluminium sample. The two images were obtained with OSAM system.may be involved to ause aousti deviations, as observed in Fig. (1.1). Every pointbelonging to the wavefront interats with grains ausing the phase to deviate fromwhat would expeted to be if there were no grains, i.e. non-polyrystalline mate-rial. The ause of those aberrations is due to the anisotropy and orientation of eahgrain. Whatever the proess involved it is desirable to haraterise overall aberra-tions from a statistial point of view. It is lear that aberrations depend somehowon mirostruture of the sample under onsideration. This dependeny an arryonsiderable information and presents di�ulties for a theoretial desription of thesystem.Statistial analysis of aberrations requires multiple measurements of the aous-ti �eld over the mirostruture, to obtain unbiased estimation of aberrations inpolyrystalline materials. This is beause grain harateristis vary randomly. Thatis to say, grain orientation, anisotropy and grain topology have to be desribed bystohasti proesses. Fig. (1.1) is the aousti �eld measured on a partiular loationon the surfae of the sample. Consider the experiment of measuring the aousti�eld with the soure loated at two two di�erent loations on the surfae of the same



Introdution 15sample, suh that the sanning areas do not overlap, then beause of the stohastinature of mirostruture, it is expeted to obtain a di�erent deviation pattern foreah measured �eld. That is, the aousti deviations as shown in the amplitudedistribution in Fig. (1.1) would follow di�erent paths. The reason for this is as onehanges soure and sanning loation the wave is propagated in a di�erent reali-sation of the ensemble of proesses desribing mirostruture. Continuing in thisway one would be able to build an ensemble of the aousti �elds and be able tomake a statistial haraterisation of aousti aberrations, whih would depend onthe ensemble of mirostruture.Aousti aberrations are absent in non-polyrystalline materials, suh as glassor any other solid with no mirostruture, as stated before. The word homogeneousmedium is sometimes used in this thesis as synonymous for non-polyrystalline ma-terials. But a polyrystalline material an also be onsidered as a homogenousmedium if the wavelength is relatively bigger than the sale of the inhomogeneities.At this sale elasti waves, suh as SAWs do not interat with the mirostruture,so aberrations are wavelength dependent.The objet of study will be images of the aousti �eld in a form presented inFig. (1.1) for the statistial study of aousti aberrations.1.3 E�ets of aberrations and adaptive aoustisAberrations an be undesirable sine they a�et the aurate measurement of meanwave veloity [14℄. The problem of ompensating for aberrations requires knowledgeof the stohasti Green's funtion of the system. One method in dealing with thisproblem is presented in [14℄, where the author realised that by improving the orrela-tion of the aousti �eld with an optimised Green's funtion measured diretly fromthe speimen, the auray of wave veloity measurements in the region of interestould in theory be improved. This setion explains fundamentally the problem forompensating aberrations in aoustis arising in the OSAM system. As this workadvanes, it will be seen that it is possible to exploit this phenomenon to gather



Introdution 16information about solid mirostruture.1.3.1 Correting for aousti aberrationThis setion explains the mehanism for orreting aousti aberrations in polyrys-talline materials, whih is an integral part of the OSAM system. The OSAM systemuses a spatial light modulator (SLM) to projet a light pattern onto the surfae ofthe sample. This ats as a thermoelasti ultrasoni soure for SAW generation [17℄.Consider the experiment of exiting a foused aousti wave to a point by deliv-ering a series of ars onto the surfae using the SLM. Two things will happen if onemeasures the point spread funtion (PSF) of the system at the fous point.a) The PSF is the amplitude of a wave with undistorted spherialwavefronts. Aousti aberrations are absent if the sample is an isotropimaterial Fig. (1.2)(a).b) The PSF is the amplitude of a wave with distorted spherial wave-fronts. Aousti aberrations are present if the sample is a polyrystallinematerial Fig. (1.2)(b).To ompensate for aberration in this ontext would mean to bakpropagate thedistorted PSF, Fig. (1.2)(b) to the zone of ultrasound generation where the phaseerror is alulated by omparison with the non-distorted PSF as in Fig. (1.2)(a). Thisproedure is equivalent to feeding the SLM with an optimised soure that dependson the harateristis of the medium. The distorted PSF is bak propagated to thesoure in a homogeneous half spae using an angular representation of the �eld tofeed the SLM with the new pattern [18℄. The resulting PSF at the fous point wouldbe as if there were no mirostruture to interat with as illustrated in Fig. (1.2)().The orrelation of the aousti �eld is an important part in orreting for aberrationsand also the ore of this thesis for other reasons whih are explained later. There aresome hardware issues to deal with in order to sueed in orreting for aberrations,spei�ally how to detet them, and these are arefully reviewed in [19℄.
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Distorted PSF Corrected PSFUndistorted PSFFigure 1.2: Shemati representation of the mehanism in orreting for aberrations.a) It shows a foused SAW in non-polyrystal material by projeting ars of lightonto the sample through SLM. Below it, is the graph of the PSF at the fous point.b) Similar situation as in (a), but the medium is a polyrystal, showing also thedistorted PSF at the fous point. ) Similar experiment as in (b) but the arsthis time are distorted by feeding the SLM with the bak-propagated waveformin a homogeneous half spae from (b). The undistorted PSF is also shown in ()illustrating the orreted aberrations.



Introdution 18The above proedure is similar to the one followed in optis for orreting aber-rations of light for ground-based telesopes [1℄. Light passing through a turbulent
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SystemFigure 1.3: A simpli�ed optial on�guration of an adaptive optial imaging system,redrawn from [1℄.medium suh as the atmosphere with a variable index of refration, is spatiallyaberrated in a random fashion ausing images from distant objets, e.g. stars, to bedistorted. The problem is how to orret these deviations or aberrations in orderto get an aurate image of the objet. The area dediated to this type of problemis Adaptive Optis and is a very ative subjet sine aberrations are an undesirablee�et in gathering information. Many sophistiated instruments have been built inorder to orret or minimise this e�et. Fig. (1.3) shows a simpli�ed version of a typ-ial optial imaging system [1℄. This type of instrument orrets for the aberrationsusing a hardware, deformable mirror(DM), shown in Fig. (1.3). The OSAM systemworks in a similar way in the sense that it is also apable of orreting aberrationsarising in solids.1.4 Aberrations and sattering of wavesTheoretially speaking aberration in polyrystalline materials ould be desribed in amore general theory for waves in media with variable harateristis, spei�ally the



Introdution 19sattering of elasti waves by mirostruture. The proess of sattering is far moreomplex than aberrations, sine aousti aberrations ould simply be desribed asdistortion of the wavefront of forward sattering of elasti waves. A wave an travelin the forward and bakward diretion due to interations with the satterers orgrains in polyrystals. For instane, let us imagine a vetor normal to the wavefronttravelling in the forward diretion within a polyrystalline material. The vetorwill hange diretion, but still part of the forward �eld by interating with grains(aberrations). It an, however, be re�eted and re�eted again by grain boundaries.This proess is repeated for all points belonging to the wavefront, This is what wemean by multiple sattering, ausing the �eld to be extremely omplex and usuallyrandomised. In the very spei� ase of a SAW in a polyrystal, waves an bere�eted by grain boundaries and forward re�eted again ausing a ompliatedwave interation, even mode onversion.All energy arried by elementary waves travelling in the diretion of propaga-tion onstitute the so alled forward sattering whereas bakward sattering is theopposite. In many pratial appliations forward sattering is stronger than its oun-terpart and therefore baksatter very often is negleted. As shown in Fig. (1.1),aberrations are the wavefront distortions of the �eld in the forward diretion.The sattering theory of waves in polyrystalline materials is desribed by thetheory of elasti waves in random media. This theory is an extension of linearelasti theory for homogeneous solids, in the sense that elasti harateristis viaelasti moduli is a spatial random tensor that depends on position [20℄. The elastiharateristis of eah grain is a major problem in this theory sine eah grain is ananisotropi solid in its own right. Therefore, the theory an get very ompliated ifonsidering all the right elasti properties of eah of the grains. It is well known thatanisotropi single grains are di�ult to study not beause of the number of elastionstants involved but also of the ompliation in obtaining the displaements. Theauthors in [21, 22℄ have studied solids of general anisotropy, for instane. On topof that, one still has to onsider the orientation of the grains with respet to eahother. In would be seen that some approximations in grain anisotropy have to be



Introdution 20introdued in order to get useful results about the elasti response of a polyrystal.In this thesis the elasti model for SAWs is replaed by the stohasti salarmodel, where the medium is desribed by a single salar random proess simplifyingthe mathematial development. This avoids the use of a tensor random proessneessary in the full theory.1.4.1 Modelling the mediumModelling or speifying the medium is part of the problem of wave propagationin polyrystals. It is a ompliated problem in the theory of wave propagation inpolyrystals sine mirostruture of the polyrystal an have ompliated geomet-rial forms. In the theory all the geometri and elasti properties are embeddedin the elasti moduli c. Thus, the spei�ation of tensor c is important in wavepropagation, where c is a tensor that depends on position.The theoretial desription is greatly simpli�ed by modelling the elasti modulias c(r) = c0 + c′(r) [23, 24, 25, 26℄, where c′ is a stohasti proess representing the�utuation with respet to c0. The proess c′ aounts for wave veloity variationswithin grains due to the anisotropy and random orientation of grains. The simpli-�ation is introdued by imposing simpli�ed onstraints as a random proess, forinstane, using known orrelation funtions, 〈c′〉 , 〈c′(r)c′(r′)〉 , ... where the brokenbrakets represent an ensemble average. The c0 elasti moduli is the average overorientation and number of grains within a volume. The onstants c0 orrespond tothe elasti moduli for homogenous solids. This model an equally be applied to thesalar approah, in the sense that the wavenumber is modelled as k = k0(1 + µ)where µ is the �utuating part. It will be seen that by speifying the seond ordermoments for µ as being exponential form, many polyrystals with mainly onvexgrains an be modelled. This model will allow a formulation of a theoretial desrip-tion for the orrelation of the �eld to be obtained. Experimental results will showhow this is related to the atual material.



Introdution 211.5 Aim and ontributions of the workOne of the purposes of this work it to provide a tool for a statistial study ofaberrations based on orrelation of the aousti �eld. The work is aimed not onlyfor the likely use in material haraterisation but also to aid in the problem ofompensating for aberrations in aousti propagation.The orrelation of the �eld is measured using a transverse orrelation. Thisfuntion is to be related to the seond order moments of the proess haraterisingthe medium via a salar theory. From this relationship, some harateristis of theinvestigated polyrystals are obtained suh as the mean grain size. The knowledgeof mean grain size is an important parameter in material haraterisation. TheNDE methods applied in this thesis for testing materials indiretly measure materialharateristis. There is still a lot of work to do, but it is believed that this workwill be valuable in reahing that point.The aberrations of the �eld, regarded as a random proess, are statistiallyanalysed from an ensemble of aousti �elds built up by performing multiple mea-surements on the surfae of a sample. This analysis permits the measure of thetransverse or two-point orrelation Γe diretly from measurements with the purposeof omparing it to a theoretial model whih is able to extrat the mean grain size.The theoretial work is based on stohasti waves in inhomogeneous media. Thepurpose is not to give a general treatise on the subjet but a useful theoretialtreatment appliable to aberrations. This is done by approximating seond mo-ments within the framework of a stohasti proess, despite the apparent restritiveassumption on mirostruture.In summary, the ontribution of this work is the establishment of a wave or-relation funtion that quantitatively desribes the loal anisotropy and mean grainsize of a ertain polyrystalline materials. This provides a relatively simple way ofunderstanding wave propagation in inhomogeneous media and its diret relationshipto atual mirostruture.The statistial properties of SAWs in polyrystalline materials are de�ned by



Introdution 22seond order moments of the aousti �elds and these relate to material grain sizeand anisotropy via the wave orrelation funtion.1.6 Objetives and thesis layoutThis thesis has been organised into three main parts omprising seven hapters thatontain theoretial aspets of waves in inhomogeneous media, experimental work insolids with mirostruture and simulations.The literature review, is arried out in hapter (2) fousing on waves and aberra-tions from 1900 up to the present in inhomogeneous media. This review emphasisesthe importane of the �rst and seond moments of random �elds applied to ultra-soni propagation. It overs both elasti and salar waves whih are later used forthe theory of SAWs in polyrystals.A number of the artiles ome from a di�erent area suh as the stohasti waveequation that has extensively been applied there. A few artiles on the importaneof numerial tehniques used in metallographi studies are mentioned. These arelater used to study the anisotropy of polyrystals in simulated media.The theoretial aspets of wave propagation are overed in hapter (3) based onelasti waves and salar waves. The methodology is to redue the full wave theory tothe salar approah for SAWs in polyrystals. The elasti properties of polyrystalsare disussed onneting the anisotropy of the grains to loal geometri features ofthe mirostruture.The following diagram, Eq. (1.4) shows shematially the main parts of the thesis.The starting point is a polyrystal as the objet of study. As the diagram (1.4) shows,the important aspet in this part will be the seond order moments Γµ from whihthe geometri harateristis of the mirostruture an be modelled. A presribedexponential form of Γµ is disussed as a possibility to approximate mirostruturefor the type of polyrystals investigated in this thesis. Towards the end of hapter(3) numerial tehniques are introdued for mirostruture simulation. Also a simplemodel to simulate wave veloity variations in polyrystals is disussed. Realisation
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Chapter 3
Propagation ofSAW in stohastimediaChapter 4 Theoretial modelof the propaga-tion of statistialproperties (Γu) instohasti media
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Figure 1.4: Chart showing shematially the thesis layout, highlighting the mostimportant aspets of thesis and hapters where they are disussed.



Introdution 24of phase variation of the phase sreen model were modelled using this tehnique togive realisations of the �eld.Chapter (3) was intended to deal not only with mirostruture but also withaousti simulation. The Voronoi tessellation is brie�y disussed and is used to sim-ulate real mirostruture. The wave number in a disrete medium is modelled basedon this. This simple algorithm used to evaluate the multiple integral representationof the �eld based on the disrete Fourier transform is given in appendix (A.5). Theorrelation length of the random preess representing the inhomogeneities and itsrelationship to the mean aliper diameter of grains is also disussed.Chapter (4) introdues the SAWs in the half spae and its relation to the wellknown angular spetral representation of a �eld disussing brie�y SAW generationfrom a line soure. This hapter also introdues and develops the phase sreenmodel for wave propagation in random media whih will be a fundamental part inthe study of orrelation of the �eld. The overall aim of the hapter (4) is to give anexpression for the aousti �eld whih allows us to alulate the orrelation funtionof the �eld in hapter (5).The quanti�ation of aberrations is based on the orrelation of the �eld. It is themost important part of the thesis, thus orrelation of the �eld is disussed in hapter(5). This quanti�ation is made by means of a transverse orrelation funtion andis the main ontribution of this work. Therefore, hapter (5) is dediated to thealulation of this funtion from two methods. The �rst approximation is givenbased on the expression alulated in hapter (4). This is presented on the �rst halfof the hapter leaving the mathematial details for the appendix (A.1). The otherhalf is dediated to give an alternative approximation to the orrelation funtionbased entirely on the Helmholtz equation.The experimental work is presented in hapter (6) along with the instrumenta-tion. In the �rst part of this hapter the main omponents of the OSAM systemare presented, whih is followed by a setion explaining in great detail the prepara-tion and haraterisation of samples. The aberrations investigated on these samplesare given in a separate setion along with the methodology to arry out the ex-



Introdution 25perimental work. The statistial proedure is given by introduing the orrelationand arithmeti average for �nite sequenes. Finally, the main result of this thesis ispresented in a graph omparing the theoretial and observed orrelation funtion.The aberrations are statistially analysed from an ensemble of aousti �elds builtupon performing multiple measurements on the surfae of a sample. The analysispermits an estimation of Γe, a transverse 2-point orrelation from the aoustialensemble. This experimental orrelation funtion is ompared to a theoretial or-relation Γu, given in hapter (5) from whih, by solving a non-linear �tting, thedegree of anisotropy as well as mean grain size are obtained, see diagram (1.4).The �nal part of hapter (6) is intended to orroborate the theoretial and experi-mental aspets of this work. The analysis of hapter (6) is repeated here using purelythe aousti �eld in a simulated mirostruture. The simulation of mirostrutureis from an independent soure and unrelated to the point of view presented in (4).The very last part of hapter (6) is to do with the noise present in measurementsand the �lter for de-noising the signal is disussed.The �nal part of the thesis omprises hapter (7) and the appendies (A). Theformer is dediated to onlusions and future work whereas the latter are appendiesomplementing the theoretial work developed in earlier in hapters (4) and (5).



Chapter 2
Literature Review
IntrodutionThis a brief review of the existing theoretial and experimental methods of elastiityin materials that are an aggregate of grains randomly orientated in spae. Thisinludes any engineering material, with speial attention to aluminium and titanium.It also reviews some aspets of material haraterisation as it is partially the subjetof this thesis. The mehanial properties and material haraterisation with methodsnot related to ones treated here an be seen as further reading into the theory ofwaves in media with random harateristis, espeially salar theories. Muh of themethods mentioned below were developed in areas other than aoustis in solids,espeially orrelation theory whih fundamentally belongs to the theory of lightpropagation.2.1 Elasti waves in inhomogeneous mediumPolyrystalsA polyrystalline material, roughly speaking, is an aggregate of grains with di�erentgeometri features and highly orrelated elasti properties. The geometry of grains,or whole mirostruture, is haraterised in terms of grain orientation, grain bound-aries, subdivision of grains, shape and texture [27℄, to mention just a few. Grains



Literature Review 27as entities an be a single or a subdivision of rystals. These lusters of rystalsare sometimes part of a subgrain and an be transformed to form entirely a newgrain [28℄. Thus, the rystalline struture determines the anisotropy or isotropy ofindividual grains.The orientation of grains is measured with respet to the orientation of rystalsforming the atual grain. One would have multiple orientation in those ases wherethe grains ontain more that one rystal. The rystallinity and orientation have to betaken into aount in establishing the anisotropy of grains [29℄ beause of the e�eton wave attenuation. Di�erent grains have di�erent degrees of anisotropy and froma theoretial point, those di�erenes are onsidered to be a random proess [30℄. Insome ases grain boundaries an take any geometri form depending on the material.For instane, at some sale pure aluminium ontains elongated grains with wellde�ned grain boundaries but an have ompliated geometri harateristis duringrerystallisation [27℄. The rerystallisation and boundary formation ours when,for instane a re�ner [31, 32℄ is added to the melted material (aluminium), duringheat treatment. Pressure is another well known proess to modify the mehanialproperties of metals beause rerystallisation may our. Polyrystals an havemultiple phases, that is a grain need not be of the same material or they ould havea mixture of two or more elements [27℄. Beause of the simpliity in mirostruture,single-phased polyrystals are the subjet of this work, in partiular aluminium.The grains in a polyrystal are in reality three dimensional [33℄; haraterisa-tion, however, is performed in a plane that shows a ross setion of eah grain alongthe plane. Charaterisation in this thesis means estimation of the grain size of thepolyrystal. The statistial estimation of the diameter of the rystals have beendeveloped [34℄ to obtain a realisti estimation of diameter of the grains. From atwo dimensional ross setion (photomirograph) of polyrystals. Geometri fea-tures of grains in polyrystals an vary in omplexity, it an take any shape suhas polygonal as well as elongation in preferred or multiple diretions [34℄ (texturedpolyrystals). The haraterisation of textured polyrystals is slightly more om-pliated than polyrystals with polygonal grain shape. Equiaxed grains are those



Literature Review 28in whih the diameter of individual grains is independent of diretion so they anbe haraterised by a single parameter unlike elongated grains where more thanone parameter is needed. Polyrystals with equiaxed grains were preferred in thisresearh beause of the simpliity in their haraterisation.Elasti properties of grainsHomogeneous media is used here to de�ne any single-phase elasti material withwell-ordered atomi struture, e.g. silia; that is, materials with no polyrystallinestruture. Polyrystals an be onsidered as homogeneous media at ertain sales.This homogeneous property of the polyrystals is wavelength dependent, in the sensethat if the wavelength of a elasti wave propagating in a polyrystals is muh biggerthan the mean grain size then the polyrystals are onsidered as homogeneous mediasine the wave does not interat with mirostruture. On the other hand, if thewavelength is smaller than the sale of the inhomogeneity then the polyrystals areonsidered to be inhomogeneous media. The grains, in partiular at ertain sales areonsidered to be a homogeneous medium showing the same sorts of elasti propertiesas any other solid, suh as glass. In fat, most of the elasti properties of thepolyrystals are desribed in terms of the elastiity of grains. The orientation of therystals is important for desribing many of the elasti properties as a homogeneousmedium. The orientation is determined by the orientation of the rystal or rystalsof whih the grain is onformed. A prinipal axis an be assigned to eah grain fromwhih all symmetries and orientation of the grain are de�ned [35℄. Crystals an showubi, trilini, orthorhombi, et. symmetries as de�ned in [36℄. In a polyrystalgrain orientation may be lustered round a spei� diretion (preferred orientation),or they an have no-preferred orientation. In the latter, one speaks of polyrystalwith grains randomly orientated with respet to the rystallographi axis [27, 35℄.On this basis, eah grain is seen as a linear elasti solid and an be isotropi oranisotropi [37℄. Their anisotropy here would be measured in terms of the elastimoduli [35℄. Thus, the elasti properties in a polyrystal are haraterised by atensor of rank four being denoted by cijkl, whih in general will be a funtion of



Literature Review 29position or a funtion of the angle of orientation [29, 35℄. To avoid writing thesub-indies every time one refer to it, the elasti moduli are denoted by the singleharater c.2.1.1 The elastiity equationsThe elasti response from a theoretial point view onsiders the polyrystal as amedium with stohasti harateristis. That is, its inner spatial struture followsa stohasti or random pattern. Therefore propagation of elasti waves in materialswith suh properties is studied from probability theories for elasti waves in thesense that c not only depends on position but it is also a tensor proess [24, 25, 30℄.That is, cijkl(r) are random proesses for eah i, j, k, l=1,2,3, c1111(r) would be arandom �eld, for instane.A omprehensive list of referenes from 1800 on elastiity of polyrystals anbe found in [20℄, this inludes W. Voigt [38℄ and A. Reuss, pioneers in elastiitytheory in polyrystalline materials. The review is on the foundations of elastipropagation in polyrystals and a preise stohasti de�nition of the meaning ofmean �utuations, and mean stresses of rystallites based on these theories. Theauthors also emphasises the importane of quantities suh as mean and n-pointorrelation funtion.In most applied works in aoustis the above mentioned theories foused mainlyon the solution of stohasti di�erential equations desribing the system. There isa very well founded mathematial bakground on stohasti systems and its formalsolution [39℄. Here, however, the meaning of obtaining a solution will be simplythe alulation of the n-point orrelation funtion if possible, and in partiular for
n = 2, whih is the subjet of this work.The elastiity equations are presented without any disussion with the sole pur-pose of presenting theoretial methods for studying elastiity in polyrystals.The elasti response of a polyrystals under stress in terms of displaements uk



Literature Review 30in all diretions of a three dimensional body is governed by
∂

∂xj
(cijkl(r, ξ)uk,l(r, ξ)) + ρω2ui(r, ξ) = 0 (2.1)For simpliity the displaements are assumed monohromati of frequeny ω. Thedensity ρ is onsidered onstant, thus onsidering only polyrystals with no voids orinlusions. Many authors onsider the density to be a random proess [40℄ as well.Note that ξ indiates that u should be regarded as a stohasti �eld sine cijkl isa spatial random proess, that is, eah grain has its own elasti properties. EquationEq. (2.1), is extremely di�ult to solve and to the authors knowledge there is nogeneral solution for it; therefore the theory of wave propagation breaks into manyapproximations depending on the appliation or boundary onditions.Before giving the methods for solving Eq. (2.1) we brie�y explain the meaningof giving a solution.The question is, given Eq. (2.1), how does one obtain an expression for 〈u(r)〉,

〈u(r)u(r′)〉, et. or 1-point, 2-point orrelation in terms of the statistial properties
c(r)? To begin with one has �rst speify the statistial properties of c. This is amajor problem and is the subjet of intense researh as desribed below. The otheralternative would be purely in terms of probability distribution from the probabilitylaws for c but this point of view is beyond the sope of this work. Now, in pratieit would be virtually impossible to give an expression for the moments of all ordersfor the �eld u sine there is an in�nite number of them, although their importanediminishes as the order inreases.The e�etive parametersTo begin with, in order to even start dealing with a solution to Eq. (2.1) one has toknow the stohasti properties of the elasti moduli c(r). The diret answer wouldbe to to measure it from the speimen. This, as it is obvious would be a di�ult tasknot only beause one would have to measure random proesses de�ning c but alsobeause of the number of them involved. Nevertheless, in some speial ases it is



Literature Review 31possible to do the inverse problem by assuming that c is a funtion of the orientationangle [41℄ measured with respet to a �xed axis of symmetry. The authors assumethat Hooke's law or the strain-stress relationship is σij = cijkl(θ)ǫkl and develop aformalism to extrat the angle de�ning c. A more general statement is given in[42℄ where the Taylor series expansion for the elasti moduli is obtained from valuesof the displaement vetors. This formalism is applied to inhomogeneous isotropimedia but the two-dimensional anisotropi ase is also onsidered. Others have alsostudied the e�etive elasti moduli in omposite materials [43℄.The other alternative is to homogenise the elasti response of the polyrystals by�nding e�etive elasti moduli so the polyrystals ould be studied as if they werehomogeneous. These theories were �rst proposed by Voigt and later on by Reuss[20℄.Here we reprodue the de�nition of Reuss's average as it will be instrutive anduseful in other parts of the thesis as it appears in [44℄, thus
c0 =

1

2π

∫ 2π

0

T tcTdθ (2.2)where T is the matrix that rotates the elasti moduli an angle θ with respet to theprinipal axis attahed to eah grain and T t denotes the transpose of the matrix T .Later researh showed that average Eq. (2.2) is only bound for the true elasti modulias reviewed in [20℄. Thus, homogenisation would lead to erroneous desriptions ofthe elasti response of a polyrystal. The average is a very general expression forthe average moduli over orientation sine c ould in priniple have any symmetry.A more quantitative expression for the average moduli over the orientation of thegrain [37℄ with hexagonal symmetry aligned with the degree of preferred orientationis given by
c0 = 1 +

ab

2
cos 2Φ (2.3)where a is the anisotropy degree and b the degree of preferred orientation. The angle

Φ is the angle between the rystallographi axis and a �xed oordinate system. With



Literature Review 32average Eq. (2.3) the authors in [29℄ studied how the sattered energy is a�eted byparameters a and b ausing attenuation of the wave.The �rst step in giving a solution to Eq. (2.1) is to model c as a onstant part
c0 plus a �utuating part c′. That is c = c0 + c′, where c′ is random tensor ofzero mean and c0 is some sort of average that ould be well de�ned by Eq. (2.2) asa good approximation. Or Eq. (2.3) ould be used if the rystals have hexagonalsymmetry within the polyrystals. Polyrystals based on the above model are alsoalled random media in the sense that their properties di�er randomly from thehomogeneous medium. The elasti moduli will have from now on, after averaging,the meaning that they have for linear elasti theory in homogeneous media. Thenthe form c0 would be ompletely determined from the speimen in question. Thismodel is the starting point for many authors in giving approximated solutions forthe displaements in Eq. (2.1) whih are reviewed below.2.1.2 Survey on some methods of solutionIn most appliations the important quantity is the mean response 〈uk(r)〉 for thedisplaement and many artiles have been written on the subjet. The purpose ofmany of the artiles mentioned below is to solve the sattering problem posed byEq. (2.1) by obtaining the average 〈uk(r)〉 as a funtion of the statistial propertiesof the elasti tensor c. The aim is to obtain a quantitative measure of the attenuationoe�ient as a funtion of the mean grain size. This is an important point of interestfor this work so is reviewed separately.Perturbation theoryPerturbation theory roughly speaking assumes that �utuating part c′ in Eq. (2.1)di�er slightly from c0 so c an be expressed as c = c0 + ǫc′ where ǫ is a smallparameter haraterising the degree of inhomogeneity. Under these irumstanesthe displaement an be expanded as a series

u = u0 + ǫu1 + · · ·



Literature Review 33in terms of the parameter ǫ to be able obtain an approximated expression for 〈u〉up to seond order [30℄. These authors additionally assume that c an be desribedby two salar proess λ(r), µ(r) and the density is also a salar random �eld, thisassumption sometimes is termed loal isotropy. The loal anisotropy of the grainompliates greatly the theoretial development of elasti response of a polyrys-talline material so additionally one has to assume loal isotropy but this is only anapproximation to real polyrystals.Loal anisotropy an also be aurately desribed by geometri optis [45℄ in thesense that the theory desribes the evolution of rays loally. The theory redues tothe eikonal equation but other methods have been shown to have a wider range ofpratial appliability [46, 47℄. The authors in [30℄ have also applied perturbationtheory to salar and eletromagneti waves and have given a quantitative measure ofenergy lost in the propagation by obtaining an attenuation oe�ient. Others haveapplied perturbation tehniques [25℄ to obtain the mean displaement in texturedpolyrystals. A slightly more general aount of elasti propagation in heterogeneousmedia within the framework of perturbation theories is given in [24℄. The authorstake into aount the anisotropy of the individual grains with ubi symmetry, thatis the, elasti moduli are expressed by three salar random proesses, c11(r), c12(r)and c44(r) approximating 〈u〉 satisfying Eq. (2.1). In the ase of anisotropi (ran-dom proesses ontext) moduli the attenuation depends on the propagation distane[48℄; grains are no longer equiaxed so texture has to be taken into aount. Thisauthor has solved the sattering problems under more general irumstanes thanthe authors already mentioned. His approah is to use a Green's funtion, allowinghim to give general expressions for attenuation oe�ients for di�erent wave modes.Paraboli approximation and perturbation theoryPerturbation theory and paraboli approximation an be ombined to obtain ap-proximated solutions to Eq. (2.1)) for loally isotropi polyrystals [49℄. The authorsassume that the �eld is a slowly varying funtion along the propagation path andmake the following substitution u = Ueikx1 . That is the �eld U varies more slowly



Literature Review 34in the diretion x1 than that in the x2, x3 planes. This approximation is well knownin salar theory [47, 50℄ and it will be used in the forthoming hapter (4) to approx-imate the aousti �eld. They give a series of equations for uk without expliitlysolving them. These approximated equations for displaements are given in the �rstorder approximation that allows them to propagate in the forward diretion.A theory developed for linearly elasti solids in whih the sales of inhomo-geneities are very large relative to wavelength is given in [40℄ and ould be wellapplied to the ase of SAWs in polyrystalline materials solids onsidered here. Therange of appliability is when λ̄ << l, where λ̄ is the mean wavelength and l is thesale of the inhomogeneity. There are some onstraints imposed in this developmentsuh as only forward propagation an be handled by this theory. The author derivesa vetorial di�erential equation based on a range-inrement proedure that solvesthe full vetorial equation within a slab. By dividing the region of interest into slabsthis proedure allows the author to obtain loal solutions to �nally assemble theresults into a vetorial equation. From this referene, it is interesting to note thatthe author onludes that for two dimensional problems, the aforementioned equa-tions are redued to the well known stohasti Helmholtz equation in its paraboliform. More work was published on the subjet [49℄ on the potential of the paraboliapproximation for a system desribed by Eq. (2.1)). Another interesting referenein the same diretion for surfae waves in heterogenous media is [51℄. More meth-ods have been suessfully applied to the sattering problem and these are reviewedbelow where the relationship between mean grain size and attenuation has beenestablished.2.2 Mean grain size and attenuationThe mean grain size is a useful parameter for material haraterisation in manyappliations of sattering theory governed by equation Eq. (2.1) and salar theories.The aim of many authors was to solve the sattering problem posed by Eq. (2.1),approximating the mean �eld 〈u〉 and extrating an attenuation oe�ient from



Literature Review 35there. This in turn is related to mean grain size, and thus, mirostruture has diretonsequenes on wave propagation [23, 25, 24℄.The orrelation length is the distane at whih two points r, r′ are no longerstatistially orrelated. This property is de�ned in terms of the moments of c or thewave number in the salar theories. The 〈u〉 is expressed in terms of the orrelation
Γc = 〈c(r)c(r′)〉 or possible higher orders. This funtion assesses whether or not twopoints are in the same grain, thus it relates to the mean grain size. The problemhere is that the grain shape may have ompliated geometri features. The overallgeometrial features of the mirostruture, in order to �t the theory is approximatedby assuming that the diameter of the grain is independent of the diretion. Someauthors referred to it as grains with spherial properties [25℄. In this ase, Γc willdepend on a single parameter or one orrelation length. A extension when it is soevident that the grains do not have spherial symmetries is to allow Γ2 to depend onone or more parameters, perhaps diretion. This extended model generally appliesto polyrystalline metals with elongated grains or texture. In general terms, theorrelation funtion Γc annot desribe all the relevant properties of mirostrutureso the elasti response in terms of the statistis of the �eld displaements is a�etedby this.Under the above irumstanes, it is expeted to obtain a quantitative measure ofmean grain size by solving the sattering problem posed by Eq. (2.1)). The satter-ing oe�ient quantitatively measures the amount of energy removed by individualgrains [24℄ from the forward sattering �eld of a travelling wave within the medium.It depends on frequeny and it is proportional to mean grain size [24, 25, 23℄. In theabove paper the authors onsidered polyrystals with ubi symmetry but othershave onsidered trilini symmetry [52℄. More, reently [48℄ has onsidered tex-tured polyrystals and was able to express attenuation oe�ients for di�erent wavemodes. A review of how attenuation is related to mean grain size for polyrystalsof di�erent symmetries is given in [29℄.



Literature Review 362.3 Salar aousti waves (SAW)The disussions below are based on the stohasti Helmholtz equation and itsparaboli form. To avoid repeatedly referring to it in words the equation and theparaboli approximation are written without any derivation. Let us denote thewave number by k whih is a stohasti proess with ertain statistial properties.It is ustomary to denote the three dimensional Laplaian by ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂
∂z2 .The transverse Laplaian shall be denoted by ∆′ = ∂2

∂x2 + ∂2

∂y2 . Thus the Helmholtzequation is
∆u + k2u = 0 (2.4)and in the paraboli form

2ik̄
∂u

∂z
+ ∆′u + k2u = 0 (2.5)where k̄ = 2π/λ̄ is the mean wave-number over all possible realisations of the proess

k(r) and r = (x, y, z). The �rst thought to theoretially desribe SAWs in polyrys-tals would be to onsider Eq. (2.1). Equation (2.4) looks simpler than Eq. (2.1) butunfortunately it is not so simple to obtain a solution. Sine the primary interest is touse SAWs one would like to have a way of explaining SAWs setting the appropriateboundary onditions for Eq. (2.1) by reduing the problem to Eq. (2.4). The author[40℄ already mentioned, onluded that it is possible under ertain onditions.2.3.1 Methods of solution for salar wavesThe �rst step in obtaining a solution to the stohasti equation (2.4) is to reduedit to Eq. (2.5) by negleting ∂zzu along the propagation distane. The paraboliequation Eq. (2.5) onsiders only the forward sattering beause of the negletedterms leading to one way propagation only. In order to inlude the bak-propagated�eld the equation is solved for the inident and re�eted �eld [53℄, separately. Usingray traing theory it is possible [54℄ to onsider the re�eted �eld in Eq. (2.5).



Literature Review 37The di�erene between equation (2.5) and the one presented in [54℄ is that thefator 2ik is replaed by 2ik̄ exp[i(β/α) exp(2ik̄z)] where α is the amplitude of theinident wave and β the amplitude of the re�eted wave with | β |<| α |. Theparaboli version of the Helmholtz equation is well known in underwater aoustis[50℄ where it was �rst proposed. An overview of the approximation and the rangeof appliability an be found in [55℄. For an update review up to the year 2000 onthe importane of the paraboli equation (2.5) and its appliations to other areas[56℄ is a good referene. The authors reviewed most of existing methods of solutionto equation (2.5), inluding numerial methods and extensions made to the theoryto inlude wide angles in wave propagation using paraxial approximations.The equation (2.5) is on�ned to narrow angle propagations but authors haveimproved these limitations by proposing wide angle approximations [57, 56℄. Morereent methods to study approximated solutions to Eq. (2.4) are e�iently imple-mented in [58℄ using the boundary element method. Perturbation theories have alsobeen applied to equation (2.4) for obtaining the mean �eld [30℄.2.3.2 Phase sreen methodThe phase sreen method is widely used in optis for a wide range of appliationsinluding propagation of light through aberrating media suh as the atmosphere,see [59℄ and referenes therein. Strong �utuations arising from propagation of lightthrough the turbulent atmosphere are studied within the framework of equation(2.5) and the phase sreen method in [60℄. The formal solution to Eq. (2.5) and thephase sreen method is that the integrals representing the �eld in the former arewritten in ordinary integrals [60℄ rather than ontinual integrals. The analysis inthe artile is probably the formal justi�ation of the suitability of the phase sreenmethod to wave propagation.Appliation of the phase sreen method in imaging objets through the atmo-sphere is given in [61℄, where the author alulates the statis of intensity from anobjet behind a random sreen. This artile is instrutive to look at beause of thestatistial analysis of propagation involving a phase sreen from soures of arbitrary



Literature Review 38orrelation.Among the important approximations of pratial interest to equation Eq. (2.4)related to phase sreen, one ould mention the Rytov and Born method amongothers whih are well known in optis and reviewed in [47, 46, 26℄, for both elastiand salar waves.The approximated solution by phase sreenRoughly speaking if one would want to solve Eq. (2.4) within a slab and under theassumption that forward propagation is larger that the bakward �eld, the phasesreen is a good approximation. Under these irumstanes, the phase of the �eld isthe only modi�ed aspet, having the amplitude �eld unhanged. This modi�ationsimulates the e�et of the medium. Usually the amplitude is not modi�ed sinethe medium is usually onsidered as a pure phase objet but the sreen an be anarbitrary transmission objet. The �eld, within the slab is approximated by
u(r) =

∫

v(ρ)G0(r, ρ)eiφ(ρ)dρ (2.6)This expansion is analogous to Huygens's expansion [62℄ for extended soures butwith an extra term φ whih represents the medium. The funtion v is the inident�eld to the slab, G0 is the Green's funtion of Eq. (2.4) with k = k̄, and φ is azero mean Gaussian proess with known struture funtion Dφ whih is de�ned as
Dφ(ρ − ρ′) = 〈[φ(ρ) − φ(ρ′)]2〉, where ρ denotes the transverse oordinate. Thatis, Dφ is the variane of the di�erene of φ at two arbitrary points ρ and ρ′ in thetransverse diretion. The Limit of integration in Eq. (2.6) is over the spatial domainof de�nition of the inident �eld v passing through the sreen.Taking Eq. (2.6) as the starting point of propagation in a random medium manystatistial properties an be obtained suh as the spatial orrelation funtion, as onewill see in the forthoming hapters, where Eq. (2.6) is taken as the basi model forpropagation.The statistis of the �eld u given by Eq. (2.6) depend on the statistial properties



Literature Review 39of the proesses v and φ. In the ase when both proesses are Gaussian the �eld u isGaussian under ertain onditions. The authors in [62℄ have studied the evolution ofa Gaussian �eld under this operation by arbitrary random operators, in partiularfor operator Eq. (2.6). The authors quantify the strength of operator Eq. (2.6) bymeans of the variane σ2 = 〈φ2〉, being a weakly �utuating operator when σ2 << 1.Denoting the orrelation length of the inident �eld by l, if l <<
√

z/k where z isdiretion of propagation and k is the mean wave-number, then the �eld u an beonsidered a Gaussian proess behind the sreen, but with a modi�ed orrelationfuntion. Other analyses of the evolution of Gaussian �elds in random media arerevisited in [63℄. The authors studied under whih onditions a �eld u, satisfyingEq. (2.4) follows Gaussian statistis for large propagation distanes.2.4 The mutual orrelation funtionThe onept of orrelation in aoustis is analogous to oherene in light propaga-tion. The physial meaning is similar to the oherene of light, and its de�nitionis established mathematially as the seond order moment of the �eld. The seondorder moment of the �eld is also alled the mutual orrelation funtion. There isspatial orrelation or temporal orrelation whether the �eld is spatially orrelatedor temporally orrelated aording to ertain mathematial de�nitions taken from[64, 47℄.The mathematial formalism to derive an equation for the moments Γn forEq. (2.4), Eq. (2.5) is di�ult and more hallenging for Eq. (2.1) where one hasto take into aount not just the moments of one salar proess but several, depend-ing on the omplexity of the moduli c(r). A mathematial formalism was developedin [65℄ to express the seond moments of the proess involved in Eq. (2.1)). That is,an expression for quantities haraterising the elasti response of a polyrystallinematerials suh as 〈σij(r)σkl(r
′〉, 〈ǫij(r)ǫkl(r

′)〉, 〈uij(r)ukl(r
′)〉 〈σij(r)ukl(r

′)〉,...,et.,where σij , ǫil and uij denotes stress, strain and displaement respetively. But, theformulation leads to a ompliated expression whih is an in�nite series, whih is at



Literature Review 40best di�ult and of worst impossible to develop further.2.4.1 Correlation for a salar �eldThe mutual orrelation funtion is nothing else but the seond order moment of the�eld seen as a stohasti proess in time and spae. Denoting the mutual orrela-tion funtion or orrelation funtion of the aousti or eletromagneti �eld u by
Γu(r1,r2, t1, t2) = 〈u(r1,t1)u

∗(r2,t2)〉, one an de�ne that the �eld u as spatially or-related at r1, r2 if |Γu| = 1 and spatially unorrelated or not orrelated if |Γu| = 0. Ifit happens that 0 < |Γu| < 1 then the �eld said to be partially-orrelated. Analogousde�nitions follow for the temporal variable or temporal orrelation.The above de�nition desribes the orrelation of eletromagneti or aousti �eldsby means of an ensemble average for the random proess u. Thus, the de�nitionould in priniple be applied to any random proess representing something om-pletely di�erent. Let us denote by Γµ the orrelation funtion representing geometriharateristis in a polyrystal. Consider two di�erent points r, r′ in a hypothetipolyrystal, Fig. (2.1). The funtion Γµ will tell whether or not r, r′ belong to thesame region. In the situation shown in Fig. (2.1), r belongs to D whereas r′ to D′so in this partiular situation the �eld is expeted to be unorrelated beause Γµwill be zero. For the rest of this thesis the 2-point orrelation funtion or simply theorrelation funtion is equivalent to 2-point or seond order orrelation funtion. A
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Figure 2.1: The orrelation of the �eld at two di�erent grains in polyrystallinematerials.



Literature Review 41mathematial theory of the oherene of light has been developed over the years byseveral authors. In [64℄ and referenes therein, the theoretial desription is basedon the propagation of light using the angular spetral representation or Sommerfeldexpansion. Many onepts and developments from this referene have been suitablyadapted to suit our needs in SAW propagation. The theory of oherene is notrestrited to the seond order moments. Other moments suh as the fourth momentare also important in atmospheri propagation beause it gives a measure of sintil-lation for stars, [66, 67℄. The authors provide an analytial solution for the fourthmoment based on Eq. (2.5).2.4.2 Survey on orrelation funtionLet us start by introduing the equation for the seond order moments in theparaboli approximation. Hene,
2ik̄

∂Γ2

∂z
+ ∆′Γ2 + k̄[µ(ρ)− µ(ρ′)]Γ2 = 0 (2.7)The above equation is derived in [47℄ from Eq. (2.5). The ontribution to the theoryof orrelation in a random medium is vast and just a few of them will be reviewedhere. In what follows, the m-point orrelation funtion is the m-point moment ofthe aousti or eletromagneti �eld that satis�es the stohasti wave equation.One of the di�ult parts in obtaining the m-point orrelation funtion, whihtemporally will be denoted by Γm, is to �nd a suitable di�erential equation that issolvable under general terms. Many authors have used some approximations to thewave number haraterising the inhomogeneities, in order to obtain useful solutions.The Markov approximation, as it is alled, has shown to be the best approximationin many pratial appliations [47, 68, 63℄. To be more spei�, the 2-point momentof k bears the following form 〈k(r, ξ)k(r′, ξ)〉 = δ(z − z′)f , where f is an arbitraryfuntion on the remaining oordinates and very often onsidered to be isotropi,that is, it depends on a single parameter. The other ondition is on the probabilitylaw for k where many authors assumed, very often, a Gaussian distribution.



Literature Review 42In referene [47℄, an equation for Γm is derived under the Markov approximation.The tehnique, used in this referene, makes use of the Furutsu-Novikov formulafor funtionals that depend on proesses with Gaussian statistis. The di�erentialEq. (2.7) is a partiular ase of this general development. Another derivation of anequation for the moments of arbitrary order is given in [63℄. The authors in [47℄give a solution for m = 2 and disusses possible approximate solutions for m = 4.A few years later a solution of the fourth moment equation was presented in [66℄ foran inident plane wave.The onditions under whih the equation for the moments, in partiular equationEq. (2.7), is obtained are entirely based on the paraboli approximation that begunwith the work of [50℄, where paraxial approximation was �rst proposed. This approx-imation has evolved and been used ever sine, as reviewed in [56℄. A more generaldevelopment is presented in [69℄ where the author obtains a di�erential equation for
Γm for di�erent wave numbers under the Markov approximation but the Gaussianstatistis ondition for the wave number has been removed. As the author pointedout, the equation for m = 2 is the same as in [47℄, Eq. (2.7).Moment equations will be useful in understanding orrelation in forthominghapters, where the aim will be to give an approximate solution to the seondmoment with the aid of phase sreens. It is worth mentioning that an approximatesolution to Γ4 is given in [67℄ for an inident plane wave as its solution is related to thephase sreen onept used in this work. In the artile [70℄, an approximate solutionof the seond moment is given by formally approximating a di�erential operator.The two-frequeny mutual orrelation funtion is given in [71℄ establishing a generalpower law for the orrelation funtion. The general solution to Eq. (2.7) is givenusing the method of separation of variables and a modal approah for the di�erentialEq. (2.7). Other expressions equally important for the orrelation funtion is givenin [72℄, in the ase of k a omplex proess. The important point here is that anexpliit form for the orrelation is given.



Literature Review 432.5 Simulation of mirostrutureThe stress-strain behaviour of polyrystalline metals is ompliated and di�ult tomodel due to the plasti deformation of grains whih an be superimposed on linearHookean behaviour. The elasti response of polyrystalline materials, expressed ei-ther as a solution of Eq. (2.4) or integral representation Eq. (2.6) depends stronglyon the statistial properties of the medium. This, on one hand is di�ult to preditbeause of the omplexity of real mirostruture, whereas on the other, the diretmethods for investigating the morphology and statistis of the atual mirostru-ture an be lengthy. Numerial simulation ould well provide quiker answers ininvestigating the elasti response of polyrystalline materials. The authors [44℄ havesimulated mirostruture using Voronoi tessellation and omparatively investigatedthe Reuss and Voigt averages for the e�etive elasti moduli against the numberof simulated grains. The authors onluded that the Reuss and Voigt averages areuna�eted by the number of grains onsidered for the estimation as they loselyoinide. The Voronoi tessellation is explained in great detail in the main body ofthe thesis and how it has been used to obtain realisations of the stohasti phasevariation aording to formulation Eq. (2.7).An appliation of Voronoi tessellation to modelling of grain growth in mineralsan be found in [73℄, and referenes therein. The analysis of grain growth undermehanial or hemial proesses is beyond the sope of this work sine one is in-vestigating time-independent on�guration of mirostruture.Ultimately, the study of elastiity in polyrystalline materials aims to replae lo-al by global elasti properties and to be able to study the solid marosopially. Theauthors in [74℄ make extensive use of a miro-mehanial model based on Voronoiells to model elasti properties to obtain the e�etive parameters.2.6 UltrasonisUltrasound generally has a broad range of appliations. It an be bulk, Rayleighor Lamb waves. It all depends on the spei� appliation. Guided waves an be



Literature Review 44used to inspet for metal damage suh as orrosion and erosion in pipes in plaesof di�ult aess, for instane. A very interesting appliation of Rayleigh wavesis where one an make a map of the atual rystallite struture [75℄ by measuringthe veloity variations within a region on the surfae of a polyrystalline materials. This appliation is in fat diretly related to this work and it will be disussed.Aurate desription is therefore important for most appliations.Ultrasound, both theoretial and experimental has oupied the sienti� om-munity for a long time. A short, but very useful introdution to Rayleigh waves anbe found in [76℄ whereas a more general treatment of elasti waves an be found in[77, 78℄.2.6.1 Point souresThe study of point soures over a free surfae or half spae has been studied exten-sively. Most of the theoretial desriptions are based on the mathematial theoryof Green's funtion for boundary problems for either partial or ordinary di�erentialequations. This problem goes bak to more fundamental problems addressed bymany authors suh as Lamb at the beginning of the 20th entury [79℄.One fundamental problem related to ultrasound and surfae aousti waves re-gardless of soure is the alulation of the Green's funtion for a point soure on thesurfae of a half spae. This problem has an answer whih is reviewed in [78℄ amongother interesting problems related to di�erent soures.From the mathematial stand point, the problem of point soures either in threedimensional or half spae anisotropi solids has aught the attention of many re-searhers. The importane of the Green's funtion has been long reognised to bethe answer to many elasti problems suh as SAW propagation. There are severalmethods for obtaining the Green's funtion of the system. The author in [80℄ hasused Fourier integral representation for an anisotropi elasti half-spae. Othershave given expliit expressions for the Green's funtion [81, 22, 21℄.



Literature Review 45Thermoelasti soure as point soureA thermoelasti soure, suh as the one produed by an inident laser beam on ametalli surfae an produe elasti waves. SAW waves due to a thermoelasti sourehave been studied extensively. The author [82℄ onsidered transient heating on thesurfae and studied soures with harmoni variations. Years later, [17℄ onsideredthe light distribution of an inident pulse laser onto metalli surfaes, as a pointsoure and developed an expliit expression of the Green's funtion for SAWs.This theoretial aspet is taken to propagate ultrasoni plane waves in a homo-geneous medium. Green's funtions give the theoretial advantage of being inde-pendent of ultrasound generation. One of the problems is that Green's funtionsare in general rather di�ult to �nd and when known di�ult to implement. In thease of the SAW, the Green's funtion is known and it an be expanded into planewaves, and is extensively used in this thesis.The author in [83, 84℄, however realises that a more aurate desription of elastiwaves from laser pulse would follow if the spot size is onsidered as an extendedsoure. The author's motivation was that there is an extra spike in the waveformthat the theory in [17℄ ould not satisfatorily explain.SAW waves from extended souresThe theory of extended soures would follow from that for a point soure beauseit is just an integral over the region oupied by the soure. In pratie this anrepresent di�ulties. For instane, in the OSAM system one would use ars forultrasoni generation of aousti waves and the integration over suh soures anbe di�ult. There has been a lot of attention to the problem of ultrasound fromextended soures, [83, 85℄.Analysis of extended soures loser to one used by the OSAM have appeared in[86℄. The authors have arried out the alulations of Rayleigh waveforms from athermoelasti line soure. They gave an exat expression for the normal displae-ment. In order to �nd mehanial displaement, the authors assumed that the mainontribution omes from the entre of the line by assuming the width of line in the



Literature Review 46diretion of propagation in�nitely small and thus integration is redued to one vari-able aross the line soure. The authors in [87℄ studied similar soures delivered bythe SLM in the OSAM system. They used a four-element laser line array ut froma ylindrial lens.2.6.2 Ultrasonis generationUltrasound or SAW waves an be generated from a wide variety of devies. Thepiezoeletri transduer is ommonly use as a devie for detetion of sound as well assoure generation. Fig. (2.2) shows a simpli�ed version of typial experimental setupfor SAWs using a transduer to generate ultrasound. The transduer is attahed toa wedge, normally made of perspex, using a water based ouplant. The author in[76℄ disusses some of the ommon transduer and boundary onditions to generateSAWs in this geometry.
�
�
�
�PSfrag replaements

Transduer SAW
Sample

Optialdetetionsystem

Figure 2.2: Simpli�ed representation of a typial experimental setup SAW generationusing a transduer as soure of ultrasound. The detetion system an vary but itould be used the knife-edge detetion system.The detetion system an vary from system to system, so it ould well be anothertransduer. The optial detetion of system used in this thesis for the experimentalwork is based on the knife-edge tehnique [16℄ for deteting small displaements by



Literature Review 47using a laser as probe.Laser ultrasonisLasers are preferred in many appliations for both ultrasoni detetion and gen-eration due to their non-ontat nature. Sometimes this an be disadvantageousbeause ultrasound-laser generation prototype systems an be expensive and dif-�ult to operate beause they require highly aurate optial arrangements. Thistehnique requires the surfae of the sample to be polished to a mirror �nish in orderfor the detetion system to e�iently work. A good referene for laser ultrasoniswould be [88℄.An Optial Sanning Aoustial Mirosope (OSAM) was used in this thesis forimaging SAW waves in metals. This system uses a Spatial Light Modulator (SLM)to image a pattern of light onto the surfae of the sample for ultrasound generation.The pattern is modi�ed to either foused SAW or to simply propagate a plane surfaewave. The development of the OSAM has been published in a series of artiles bythe Applied Optis Group, at the University of Nottingham [89, 19, 14℄. The mainoptial parts of the system are shown in hapter (6).



Chapter 3
Waves in polyrystalline materials
IntrodutionThe aim of this hapter is to introdue SAWs in polyrystalline materials by means ofa general formulation for elasti waves in inhomogeneous media. The theory is �rstintrodued trying to keep genereality to inlude linear elasti theory for homogeneousmedium. The theory is applied to materials with observable mirostruture, thatis, those one-phased materials omposed of grains that an have an e�et on elastipropagation at a ertain sale. The theoretial model is based on stohasti proessrepresenting physial mirosopial variations as well as elasti properties of thematerial.In order to desribe mirosopi and marosopi harateristis a brief intro-dution to stohasti proesses is given. This is the �rst part of the hapter whihbrie�y introdues many of the tools needed for elasti propagation.The elastiity theory for polyrystals is then introdued for elasti wave modesthat may arise in this type of medium , in partiular to problems in a half spae. Theuse of the full wave theory is rather ompliated even for solids with no mirostru-ture, so a onnetion is made to the salar theory to desribe SAWs in randommedia. The salar theory uses the stohasti wave equation for waves in randommedia whih is normally presented as the Helmholtz equation.In most stohasti models desribing physial quantities, suh as geometri har-



Waves in polyrystalline materials 49ateristis of polyrystals , �rst and seond order moments are the most importantquantities. In partiular the seond moment, sine it is related to the orrelation ofthe aousti �eld, is emphasised in this thesis.The stohasti wave equation is a widely and well aepted model for soundpropagation in other areas, suh as underwater aoustis. There are ertain limi-tations on its use as a general solution whih has not yet been established. Oneimportant approximation, alled the paraboli or paraxial approximation has beenwidely used in underwater aoustis. Its range of appliability is given in [50, 56℄.This approximation has been used here to obtain an approximated desription ofSAW propagation in random media ombined with a phase sreen model used inoptis, whih is developed in [59℄.3.1 Theory of elasti waves in stohasti mediaThe notion of mean, seond and higher order moments is de�ned in terms of proba-bility theory. This introdution is rather brief but an extended introdution an befound in any book on stohasti proesses [90, 39℄. For a more physial expositionand appliation of stohasti proesses, [64, 46℄ are good referenes.Preliminary on random proessesThe probability spae is a lass {P, p} where P is the spae of events and p is a setfuntion taking values in the interval [0, 1]. A random variable in {P, p} is a set ofreal or omplex numbers {x(ξ)}ξ∈P with probability distribution p. The set P anbe either a ountable or unountable set, and so x(ξ) is a disrete or ontinuousrandom variable, respetively.A random proess or random �eld is a family of spatial funtions µ(r, ξ), where
µ is a random variable for eah r ∈ R3. This means that µ has its own probabilitydistribution pµr

for every r from whih moments an be de�ned. These random vari-ables belong to the same probability spae P . The set µ(r, ξ) is alled an ensembleand realisation for a �xed ξ.



Waves in polyrystalline materials 50In order to fully desribe a physial phenomenon represented by a proess µ it isneessary to speify the distributions pµ. There is a large list of probability distribu-tions to desribe physial phenomena. In [90℄, a vast list of probability distributionand their main properties are given. In partiular, the Gaussian distribution wouldbe of interest for modelling wave propagation in random media. As an example, themultivariable Gaussian distribution is presented. Let x1 = x(r1, ξ), ..., xn = x(rn, ξ)be n random variables thus its n-fold distribution is
p =

1

(2π)n/2σ1 · · ·σn

exp

[

−1

2

∑ ∆2yi

2σ2
i

] (3.1)This probability distribution will be useful in obtaining the mean orrelation of the�eld in forthoming hapters. Here, yi are arbitrary variables indiating that p isfuntion in several variables. The parameters σ2
1, ..., σ

2
n ompletely haraterise therandom variables xi(ri). These parameters are in fat the variane of the randomproesses xi, whih are de�ned below using the distribution Eq. (3.1).The properties of a proess, suh as the mean de�ned below, are de�ned in termsof distributions. Suh de�nitions an be found in any standard book on stohastiproesses suh as the ones already mentioned.As matter of introdution the 1-point moment of order k is de�ned and denotedas

mk
rr′ =

〈

µk(r, ξ)
〉

=

∫

µrpµr
dµr (3.2)Here µr is a dummy variable. The �rst moments bear speial names, k = 1 givesthe mean value whereas k = 2 orresponds to the variane. These are the mostimportant moments as many random proess an be desribed solely by these twoparameters. If one would like to extend the above de�nition for the 2-point or seondmoment, the de�nition will read

〈µ(r, ξ), µ(r′, ξ〉 =
∫

µrµr′pµrµr
′dµrµr′ (3.3)Here pµrµr′

denotes the two-fold probability density. In general pµrµr′
is a interlinked



Waves in polyrystalline materials 51funtion of two variables that allows to alulate integral Eq. (3.3). It is di�ultvery often in pratie to know an expression for pµrµr′
. A random proesses is saidto be statistially independent if its two-fold distribution splits as pµrµr′

= pµr
pµr′Analogously for any �nite number µ1 = µ(r1, ξ), ..., µn = µ(rn, ξ) of random pro-esses, they beome statistially independent if their n-fold distribution deomposeas pµ1···µn

= pµ1 · · · pµn
. Random proesses of this type are easily handled espeiallyif the µ(r) are Gaussian variables.In forthoming setions the above de�nitions on stohasti proess will be usedto desribe the theory of elasti waves in polyrystalline materials. The stohastiproess will be used without speifying a probability distribution.3.2 Elasti waves in polyrystalsA polyrystalline material is any material that is omposed of anisotropi grainswith highly orrelated elasti and geometri properties, e.g. aluminium. The grainshave random orientation with respet to eah other as well as random spatial distri-bution. Among other properties of grains in polyrystals, there is rystal plastiityand atomi lattie evolution of polyrystalline metals. Materials subjeted to timedependent proesses were not studied in this work, but good referenes on the sub-jet are [73, 39℄. In this thesis, the beginning is to desribe elasti wave propagationin a given random spatial grain on�guration.The theory is based on the lassial approah for elasti waves, the main di�er-ene being that the elasti moduli cijkl(r), whih are tensor funtions that hara-terise the elasti properties of polyrystals, are assumed to vary randomly throughspae, [40, 49℄. The theory is de�ned, in priniple for any polyrystal. There aresome onstraints imposed on the polyrystals in order to simplify theoretial aspetsof elasti waves. Here we reprodue some of the assumptions, whih are very oftenused for theoretial predition of waves modes in polyrystals , whih appeared in[91℄.1. Linear elastiity holds.



Waves in polyrystalline materials 522. The anisotropy is small within individual grains or grains an be onsideredloally isotropi.3. The grains are mainly onvex regions and equiaxed. Equiaxed means that thediameter of the grain in eah diretion and the mean alliper diameter di�erslightly.4. The rystallographi axes of the individual grain has no preferred orientation;all orientations are equally likely.5. The polyrystalline materials is single-phased with no voids or inlusions.The aluminium samples analysed in this work, whih are presented in hapter (6),hold ondition (3), (5). The hypothesis (2) quite possible sine aluminium showsrelatively small elasti anisotropi behaviour. In this thesis an extra hypothesisor statement will be neessary in order to desribe SAWs in polyrystalline mate-rials. That is, the stohasti salar approximation will su�e to desribe SAWs.This is disussed in setion (3.3.1) sine it requires some explanation. From nowon, the terms inhomogeneous or heterogenous media will be used as synonymous,and assumed to refer to any polyrystal or medium with random harateristis.Homogeneous is the opposite to inhomogeneous material, whih is relative to wave-length. For instane, a polyrystal ould be onsidered elastially homogenous ifthe wavelength is greater than the largest sale of grains within the polyrystals. Ahomogenous material at all sales relative to wavelength would be glass, for instane.3.2.1 Linear elasti polyrystalThe theory of elasti waves in heterogeneous media is entirely analogous to thetheory of linear elastiity for homogeneous solids. There is no surprise that the gov-erning equation looks similar. In the disussion that follows, Einstein's summationonvention is assumed; i.e. the summation over repeated indies is implied. Let usdenote a point in the three dimensional spae by r = (x1, x2, x3), and the brokenbrakets 〈...〉 denote ensemble average.



Waves in polyrystalline materials 53The theory of elastiity in polyrystalline materials is based on the followingmodel, known as Hooke's law:
σij = cijlm(r)ǫlm (3.4)where σij denotes the stress tensor and ǫlm the strain tensor; ciklm is the tensorrandom �eld haraterising the elasti properties of the medium. The obvious dif-ferene here to the stress-strain relationship for non-polyrystalline materials is thatthe elasti moduli cijlm is a random tensor �eld. The indies runs from 1 to 3 soone has 81 random proess desribing loal elasti properties of the polyrystal as alinear elasti homogenous material.The statement for linear elasti homogenous materials of Hooke's law is reov-ered by taking the cijkl to be independent of r in Eq. (3.4). The marosopi elastiproperties of polyrystalline materials are measured by measuring the elasti moduliwhih an be found reported elsewhere for a great variety of materials. The miro-sopi elasti properties for polyrystalline materials, that is, taken into aountmirostruture, is obviously a muh harder task sine one would have to measure arandom �eld; possibly by empirially speifying the probability distribution. Onealternative for speifying the cijkl(r) is to measured what is alled the e�etive pa-rameters based on ertain spatial averages along grain orientations. Thus, the elastimoduli are spei�ed as an average along grain orientation plus a �utuating part.This is a very important point that will be disussed more broadly in setion (3.2.2).The e�etive parameters theory intended to explain the elasti response of poly-rystals by homogenising the system. That is, replaing the overall elasti responsefor one that behaves as it were homogeneous. One of the di�ulties is how to expressthe e�etive parameters as a funtion of the moments 〈cijkl(r)〉, 〈cijkl(r)cpqrs(r

′)〉,...of individual omponents of the elasti moduli. Some authors have found bounds fore�etive bulk modulus [92℄. A brief introdution to the subjet and list of referenesan be found in [26℄. The e�etive parameter theory is not reviewed in this work butit will use some of the well established theoretial aspets for averaging the elasti



Waves in polyrystalline materials 54moduli based on the miro-harateristis of polyrystals.3.2.2 The e�etive parametersThe e�etive parameters are important in speifying the elasti moduli cijkl(r).These parameters are de�ned in terms of ertain averages over the orientation. Toavoid writing every time the sub-indies ijkl, the elasti moduli are also written bythe single harater c(r).Let us �rst review single grains haraterised by assuming that the tensor c(r) isonstant. If a non-singular linear transformation T is applied to c, therefore hangingtheir numeri values, the grain is said to be anisotropi. The transformation wouldbe an axis rotation sine the c are invariant under translations. Let us onsider
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Figure 3.1: Anisotropy of polyrystalline materialstwo adjaent grains belonging to a ertain polyrystalline material. Denoting thesti�ness by c in the oordinate system e = (e1, e2) attahed to grain D and by c′ inthe new system e′ attahed also to D′. The axes e are alled rystallographi axesthat de�ne a oordinate system within the grain. These axes are hosen in terms ofthe lattie and symmetries of the grain. In general, depending on the omplexity ofthe grain, the rystallographi axes are not orthogonal systems and sometimes thenumber of axes needed exeed the dimension of the grain. Here for simpliity, twoorthogonal axes de�ne a oordinate system within the grain, Fig. (3.1).If one performs the experiment of measuring c and c′ independently in the di-retion indiated by the arrows on top of D and D′, Fig. (3.1) then c = c′. This is



Waves in polyrystalline materials 55beause D, D′ have idential elasti harateristis but di�erent shape and di�erentorientation relative to eah other. Now, if one �xes a oordinate system, let say
e and T (θ) denotes the transformation between the oordinate system e, e′ thus
c′ = T (θ)c. What makes a polyrystalline material a speial type of medium is that
θ is a random variable, therefore one speaks of materials omposed of anisotropigrains with random orientation. The marosopi elasti response of polyrystallinematerials is haraterised by the e�etive parameters de�ned as c0 = 〈T (θ)c(r)〉0,where 〈·〉0 is the average over the orientation. The average ould be well de�nedusing Reuss's average Eq. (2.2). This, average or e�etive parameters, oinideswith the elasti moduli for homogenous solids.Based on this average, the elasti response of a polyrystalline material is mod-elled as random �utuations with respet to c0, that is c(r) = c0 + c′(r) where c′ is azero mean random tensor. Grains have their own symmetry, depending on their lat-tie that generates the grain itself. In terms of c0 they are lassi�ed as: monolini,orthorhombi, ubi, et., depending on the symmetry and form of c0. We shall takehere, grains with ubi symmetry sine aluminium an be onsidered to have thistype of symmetry as an anisotropi solid. Then a grain having ubi symmetry isharaterised with elasti moduli having the following form

c0 =
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(3.5)
Thus, three salar random proesses c11(r), c12(r), c44(r) are needed for an elastidesription of a polyrystalline material with ubi symmetry.



Waves in polyrystalline materials 563.2.3 The anisotropy of the grainsIn theory the main ontribution to of aberrations is the anisotropy of the individualonstituents of the polyrystal. The degree of anisotropy of polyrystals shall bedesribed in terms of the elasti moduli c(r), where the non-�utuating part c0 willhave the form Eq. (3.5). The anisotropy of eah grain is given as [23, 24℄
β(r) = c11(r)− c12(r)− 2c44(r) (3.6)It is understood that all the quantities here depend on position inluding β, so it willnot be written in the next paragraph. If grains within the polyrystalline materialswere isotropi, i.e. β = 0 then c44 = (c11 − c12)/2, c11 = λ + 2µ and c12 = λwhere λ, µ are onstants within grains whih orrespond to Lamé onstants [36℄ forisotropi solids. Thus, in this ase the overall aberrations or deviation of the aousti�eld would ome purely from sattering at grain boundaries with no ontributionfrom the anisotropy of individual grains. In the same sense, if β is a small varyingparameter, the polyrystalline materials are onsidered as being loally isotropi orweakly anisotropi.The type of material studied in this thesis ould be well onsidered as beingmarosopially isotropi or that the anisotropy is weak from one region into another;it seems plausible to assume that c(r) depends on only two salar random �elds λ(r),

µ(r), thus c(r) ould have the form [93, 26℄,
c(r) = λ(r)δijδkl + µ(r)(δikδjl + δilδjk) (3.7)where δij is Kroneker's delta funtion.This is the familiar form of the elasti moduli for isotropi linear elasti solidswith λ, µ set to onstants; whih are termed Lamï¾1

2
onstants or elasti onstants forisotropi solids. The loal isotropy or weak anisotropy will be useful for theoretialpurposes sine SAWs in polyrystalline materials an be redued to salar theory byusing Eq. (3.5) for the elasti moduli [40℄.



Waves in polyrystalline materials 573.2.4 The elastodynamis equationsIn this setion the elastodynamis equations are presented for a three dimensionalbody and later are speialised for SAWs. The displaement ourring in all diretionsof the body under stress are being denoted by Ui, i = 1, 2, 3. In the preseneof external fores F the stress and strain tensors are dynamially related to thedisplaement Ui(r, t) ourring within the medium by
σij,j + Fi = ρ

∂2Ui

∂t2
(3.8)

ǫij =
1

2
(Ui,j + Uj,i) (3.9)Combining Eq. (3.4), Eq. (3.8), Eq. (3.5) and assuming Ui(r, t) = ui(r, ω)e−iωt ,i.e.assuming that the displaement are monohromati �elds for simpliity, gives thegoverning equations for an polyrystalline material and no external fores as

∂

∂xj

(c(r, ξ)uk,l(r, ξ)) + ρω2ui(r, ξ) = 0 (3.10)The density ρ is assumed to be onstant. This is equivalent to hypothesis (5) insetion (3.2), where the polyrystal is assumed with to have no voids or inlusions.In Eq. (3.10) the following onvention is used ∂uk

∂xs
= uk,s for short.Equations Eq. (3.10) give the elasti displaement uk, k = 1, 2, 3 in all diretionsin the polyrystal. This means, in terms of probability theory, �nding the probabilitydistributions whih de�ne entirely the displaements uk as random �elds. From theseprobability distributions, it is possible at least in theory, to alulate all momentsof the random �eld uk. This approah is beyond the sope of this thesis, so thesolution is formulated in terms of moments of the random �elds involved, whih isdesribed below.Ultimately, the important part in the problem are the moments of the random�eld displaements, therefore the problem an be put in the following way: giventhe moments Γijkl = 〈cijkl(r)〉, Γijkl

pqrs = 〈cijkl(r)cpqrs(r
′)〉 , . . . of elasti moduli orin terms of two salar random �elds λ(r), µ(r) if cijkl is given by Eq. (3.7), Γλ =
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〈λ(r)〉 , Γλλ′ 〈λ(r)λ(r′)〉 , . . . Γµ = 〈µ(r)〉 , Γµµ′ = 〈µ(r)µ(r′)〉 , . . .., the problem is to�nd the orresponding moments Γuk

= 〈uk(r)〉 , Γukur
= 〈uk(r)ur(r

′)〉 , . . . for thedisplaement in terms of Γijkl, Γpqrs
ijkl , . . . or Γλ, Γλµ . . .. The most diret method inobtaining this relationship is to �nd a di�erential equation for all the moments Γuk

,

Γukur
,. . . whih has been proved to be an extremely di�ult problem. Nevertheless,the authors in [93℄ derived an equation for the �rst moment Γuk

in terms of a in�niteseries whih ontained all the moments of the elasti moduli.For the partiular ase of SAWs in polyrystalline material , the above formula-tion will be redued to �nd the moments for the displaement in one single diretion.Sine this is a speial ase of a more general formulation, the SAW ase is refor-mulated using the two dimensional stohasti wave in setion (3.3). The aboveformulation applies equally to salar theory governed by the stohasti Helmholtzequation in the sense that an equation for the orrelation funtion an be obtainedunder ertain onditions. This is explained in detail in hapter (5).The anisotropy an also be desribed in terms of veloity variations within grains.Thus, loally the longitudinal and transverse veloity in terms of the elasti moduliare given [24℄ as vl(r) =
√

c11(r)/ρ and vs(r) =
√

c44(r)/ρ, where vl, vs is thelongitudinal and shear veloity, respetively in a polyrystalline material. The degreeof inhomogeneity in the salar desription is also given in terms of these veloitiesas Rayleigh wave veloity is a funtion of the shear and longitudinal wave veloities.The development of this relationship is given in setion (3.3.2).The type of problem that onerns this work is two dimensional. The full wavetheory would desribe wave modes of any type as stated in Eq. (3.10), in partiularSAWs. However, it is ompliated to establish a solution under the boundary on-ditions for a SAW. A more preise meaning of the above problem formulation forSAW is given setion (3.3).



Waves in polyrystalline materials 593.3 SAWs in polyrystalline materialsIn hapter (4) a theoretial desription of SAWs is developed for the homogeneousmedium, governed by Eq. (3.10) when c′ = 0. A onise desription of a SAW soureand SAW devies is also presented. For the time being, an approximate solutionfor SAW is given below where the full wave is redued to the stohasti Helmholtzequation in two dimensions.The term SAWs has been used to stand for surfae aousti waves without statingpreisely what they are. One would simply say that SAW is a two-dimensional wavetravelling near or at the surfae of a sample or half spae as shown in Fig. (3.2).This wave emanates from a �nite line soure along x travelling in diretion z. The
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Figure 3.2: Geometry of SAW in polyrystals. The vertial arrows pointing down-wards indiate the loation of the initial �eld displaement u0. The horizontal arrowis indiating the diretion in whih a SAW propagates.use of a �nite line soure is simply beause the experimental setup uses a soure ofthis type, but SAWs are not restrited to this geometry.Formally, ultrasound on the surfae is a Rayleigh wave. Thus, the partile motionis on�ned to the yz plane being motionless in x diretion. Rayleigh waves, stritlyspeaking depend on depth, y in this ase but deay rapidly [76℄. In the type ofSAW studied here, depth is unimportant but what is really important is the normaldisplaement to the plane xz, whih shall be denoted by uy or simply u. TheRayleigh wave motion is desribed simultaneously by the displaement in the other



Waves in polyrystalline materials 60diretions whih desribe an ellipti partile motion.The statement of the problem in general terms is to �nd a single random �eldthat satis�es Eq. (3.10), with boundary onditions u(x, y, 0) at z = 0. In fat, themain interest is the seond order moment 〈u(r)u(r′)〉 and to the author's knowledge,it has not been reported in the literature. Many artiles, however have written onthe �rst moments of the �eld satisfying Eq. (3.10) for di�erent wave modes andrystals symmetries [48℄.Sine one single �eld is needed to desribe a SAW in the geometry of Fig. (3.2),it seems that salar approximations would be appropriate for the present problem.3.3.1 The salar approximationThe boundary problem established in setion (3.3) in elastiity terms is a lateralshear motion. That is, the partile motion is perpendiular to the plane xz. Ifone assumes loal isotropy, that is the elasti moduli has the form Eq. (3.7), themathematial formulation developed in [40℄ establish that SAW in polyrystals anbe desribed by a stohasti salar equation. That is, u satisfying Eq. (3.10) anbe desribed by a single stohasti salar equation. The author has redued theproblem to the paraboli version of the stohasti Helmholtz equation. There is noway of proving at present that Eq. (3.10) an always be redued to a salar equationfor the normal displaement u, for polyrystals of general anisotropy, that is thosepolyrystals with elasti moduli not of the form Eq. (3.7). Therefore, the additionalhypothesis to the ones introdued in setion (3.2), is that a SAW an be desribedby a stohasti salar equation whih orresponds to the Helmholtz equation. Fromnow on, k0 = 2π/λ̄ will denote a mean wave number where λ̄ is the mean Rayleighwavelength, ∆ the Laplaian operator in two dimensions and v̄ is the mean Rayleighwave veloity. Thus, SAW in a polyrystal for the geometry depited in Fig. (2.1)an be desribed by
∆u(r, ξ) + k2

0u = −k2
0µ(r, ξ)u(r, ξ)

u(x, 0) = w(x) (3.11)



Waves in polyrystalline materials 61where
k2(r, ξ) = k2

0

(

v̄

v(r, ξ)

)2

= k2
0(1 + µ(r, ξ))2 (3.12)and µ would be a zero mean Gaussian random funtion that relates to the inhomo-geneity of the medium. The boundary problem Eq. (3.10) has been redued to theboundary problem Eq. (3.11) with initial boundary ondition w(x) in the plane x. uis a salar that orresponds to normal displaement, in pratie the displaement isa vetor within plane omponents. Here, we neglet the e�et of these on the basisthat normal(salar) displaements exhibit the statistial behaviour harateristi ofthe full displaement �eld.Based on this model for SAW in polyrystals the problem will be to obtain anexpression for the mean orrelation funtion 〈uu∗〉, whih is the subjet of hapter(5). The �rst thing to do would be to onstrut an approximate solution to Eq. (3.11)based on a sreen model. But �rst, one has to speify moments of the random proess

µ and ertain onditions where it is possible to give an approximate solution of theboundary problem.3.3.2 The degree of inhomogeneityThe salar theory does not distinguish between the elasti properties of the grains.The grains, in this theory are onsidered random satterers haraterised by a wavenumber whih is a random funtion of position and haraterised by the stohastiequation, in partiular the �rst and seond moments. The wave number is mod-elled as �utuations with respet to the bakground wave number, this is the meanalong the ensemble of satterers. The wave number, whih is normally expressedin terms of a zero mean funtion µ in Eq. (3.12), whih is the random �utuationsof the aousti �eld. Those random �utuations are quanti�ed by the degree ofinhomogeneity de�ned as
σ =

1

k0

√

〈[k(r)− k0]2〉 (3.13)



Waves in polyrystalline materials 62Eq. (3.13) measures the random �utuation with respet to the mean wave number
k0. The brakets here denote an ensemble average. The average is taken along allrealisations for the spatial grain on�gurations.The ultrasound onsidered here is a SAW that travels with the Rayleigh waveveloity. It is well known that, this veloity in terms of the Poisson ratio ν isapproximately given by [76℄

v =
0.862 + 1.14ν

1 + ν
vs

= p(ν)vs (3.14)The veloity at whih the SAW is travelling in a polyrystalline material an there-fore be given as p(ν)vs(r), where vs(r) is the veloity for shear waves previouslyde�ned for polyrystalline materials. Thus, the wave number in terms of vs has theform
k(r) =

ω

v(r)
(3.15)

=
ω

p(ν)vs(r)The inhomogeneity degree de�ned in Eq. (3.13) relates in an obvious way to thevariane of proess µ. The standard deviation for µ is de�ned as σ =
√

〈µ2〉;it shall be seen that σ is important in the orrelation of the �eld. The seondmoments of k are de�ned in terms of this parameter. From now on, σ and thedegree of inhomogeneity would mean exatly the same quantity. The parameter σan be expressed in terms of the �utuations of the elasti moduli in polyrystallinematerials. Realling that vs(r) =
√

c44(r)/ρ is de�ned in terms of the salar proess
c44, let c′ denote the �utuations with respet to the mean c0

44; thus
c′44 =

c44(r)− c0
44

c0
44

(3.16)From Eq. (3.15), after inserting the de�nition for the veloity vs the ratio (k(r) −
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k0)/k0 in terms of c44 and c0

44 is given by
k − k0

k0

=

√

c0
44 −

√

c44(r)
√

c44(r)

=

√

c0
44

c44(r)
− 1

=
1

√

c′44 + 1
− 1 (3.17)If the �utuations within a grain are small, that is ‖c′44‖ ≪ 1, the term on the righthand side in Eq. (3.17) is approximated by the linear term of its Taylor expansionaround zero. In doing so,

1
√

c′44 + 1
− 1 = (1− 1

2
c′44 +

3

8
(c′44)

2 + · · · )− 1

≈ −1

2
c′44 (3.18)Squaring both sides of Eq. (3.17) and inserting Eq. (3.18) in the expression, the stan-dard deviation or degree of inhomogeneity σ in terms of the anisotropy �utuationwithin grains is given by

σ ≈
√

〈(c′44)2〉
2

(3.19)The physial meaning of the standard deviation is now lear from Eq. (3.19). Thestandard deviation is half the standard deviation of one entry of the elasti modulimatrix. This entry aounts for wave veloity �utuations with the grains. Thus,the standard deviation σ measures the overall degree of anisotropy of polyrystallinematerials. The standard deviation an also be related to statistial geometrialharateristis of polyrystals via a orrelation funtion of the wave-number. In thefollowing setion it will be seen in whih way σ relates to the orrelation funtion of
k.



Waves in polyrystalline materials 643.3.3 The statistial harateristis of the mediumReal materials an have very ompliated mirostrutures, so an approximate de-sription is potentially suseptible to large errors. In general, grains an be on-sidered as randomly distributed spatially with preferred or random orientation, andmarosopially the material an be isotropi or anisotropi. �Randomly distributed�or just �randomly� is being used here as a generi word; so the spatial arrangement ofgrains may follow any probability distribution. Here, for theoretial simpli�ationsthe sample is onsidered as being omposed of randomly oriented satterers whihare either isotropi or weakly anisotropi. This is a restritive approximation but itappears to be justi�ed as it explains many of the observed phenomena.At this stage, no progress an be made without assuming statistial propertiesfor µ. There is experimental evidene, whih is the subjet of hapter (6), to assume
µ to be Gaussian and loally isotropi. By loal isotropy (isotropy in the stohastiproesses ontext), it means that Dµ = 〈[µ(r)− µ(r′)]2〉 depends only on the di�er-ene r = ‖r− r′‖ and that the orrelation of µ is invariant under translations. Thisassumption is neessary in order to give an approximated solution to 〈u(r)u(r′)〉.Another important point is the grain shape, whih an be desribed basedon the sale length l. This length expliitly desribes the form of orrelation
Γk = 〈k(r)k(r′)〉, whih also fully desribes µ. A single model is being used whihharaterises µ statistially in terms of σ and l. This is a fair representation of met-als with equiaxed grains whose spatial distribution an be desribed by an isotropirandom funtion. Complex strutures suh as inhomogeneous grain size distribu-tion -elongated grains- will require a more sophistiated model. Miro-strutureswith grains elongated in a preferred diretion an experimentally be investigated bypropagating ultrasound at multiple diretions.Moreover, in what follows the seond order moment Γµ = 〈µ(r)µ(r′)〉 an takeany form as long as it is a funtion of r− r′ only. But the exponential form Γµ =

σ2 exp[−|r − r′|2/l2] has been shown to be useful in other areas to desribe realphysial phenomena, [47℄. The funtion Γu will depend on two parameters in thisapproximation: the degree of anisotropy and a orrelation length l. The orrelation
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l indiates the distane where two points bear no statistial orrelation, that is fortwo points, suh that ‖r− r′‖ > l then Γµ → 0 . This orrelation distane is loselyrelated to the mean diameter of the grains. They are, in fat the same quantity asshown in setion (3.3.3) below, where a preise meaning of the diameter of the grainis also introdued.Mean grain sizeThe mean grain size or more general geometri features of mirostruture are im-portant parameters in material haraterisation. There is no simple method or evena simple number that best desribes geometrial features of grains. There are sev-eral standards for measuring grain size used in industry. One very popular amongmetallurgists that uses a statistial estimation of mean grain diameter by laying outline segments of random length on a mirograph and ounting the number of grainboundary intersetions [94℄ within segments.Many other important stereologial methods are available to desribe geometrifeatures for a given on�guration of mirostruture whih are reviewed in [34℄. Themean alliper diameter b̄ is disussed, for any geometri objet X ⊂ R2, de�ned as

b̄ =
1

π

∫ π

0

b(Xθ)dθ (3.20)where b(Xθ) is the projetion of Xθ onto the y axis, see Fig. (3.3). Xθ is the sameobjet X but rotated an angle θ around zero, that is Xθ = M · X is a rotationof X around the origin. The integral in Eq. (3.20) averages the length of all linesthat onnet two points in ∂X that are diametrially opposed with respet to M .The symbols ∂X stand for the boundary of the objet X. For a polygonal X withverties vn = {zn | zn ∈ C}, M = eiθ and M ·X beomes the onvex hull of {eiθvn}.The onvex hull of {vn} is the minimum losed polygon ontaining the points vn.The mean alliper diameter is a measure of the �average� diameter of a shape. Itis determined by taking the average, over angle (or solid angle), of the distanebetween two limiting lines (or planes) bounding the extremities of the shape as the
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Figure 3.3: Rotation of objet X around zero, whih represents grain around. Thematrix M rotates X by an angle θ, the alliper diameter is the distane between thepoints interseting the vertial axis as indiated by b(X0) and b(Xπ/2).shape is rotated, see Fig. (3.3). Therefore, ¯̄b is de�ned as the average of b̄ overthe number of shapes X. If X is onvex L(X) = πb̄(X) where L(X) =
∫

∂X
ds isthe length of the boundary ∂X. The above is a good theoretial de�nition, and itwas used to haraterise the aluminium samples for the experimental work. Theonnetion between the orrelation length l and the mean alliper diameter is doneby simulating grain spatial on�guration using Voronoi ells as will be shown insetion (3.3.4).3.3.4 Simulating the mirostruture of polyrystalsIn order to generate realisations of the phase variation φ one needs to know preiselythe properties of the polyrystal. This, as has been disussed in setion (3.3.3) isdi�ult in general. The wave number k was expressed as mean k0 plus a �utuatingpart µ in Eq. (3.12), and some assumptions were introdued for the proess µ, suhas the orrelation funtion Γµ to desribe the medium. Realisations of the proess

φ an be given if Γµ is known as explained below. Another method is by simulating



Waves in polyrystalline materials 67the atual mirostruture of the polyrystals by using Voronoi ells. This methodwill be explained �rst by introduing the Voronoi ells.The simulation of mirostruture is a ommon pratie in the area of materialharaterisation for theoretial and pratial reasons [44, 34℄. One of the most widelyused not only for its mathematial simpliity but for its losest resemblane to realmirostruture is the Poisson Voronoi tessellation. Here, in this hapter only briefintrodution of its potential is given. The aim here was to simulate wave veloityvariations within the material as well as to investigate the relationship between themean grain size Eq. (3.20) and the orrelation length l of the proess µ introduedearlier in setion (3.3.3).The Voronoi ellsThe Voronoi tessellation is based on a Poisson random proess in spae. This proessplaes a number of random points that serve as seeds for the regions that de�ne thetessellation of the spae. To begin with, onsider a domain B ⊆ R2 in the twodimensional Eulidean spae. A Poisson proess N(B) in the domain B is a randomproess that generates N pairs of points within B, with Poisson statistis. In fat,
N(B) gives the number of regions in whih B is going to be divided thus the averagesize of eah region. This implies that the size distribution and mean size of eahregion is a statistial estimation that depends on how the seeds are generated.The starting point to generate the seeds in B that predetermine the tessellation isby generating samples of the random variableN(B). Let us generate a number N(B)with Poisson statistis. The seeds in B are obtained by generating N(B) points in B,that is (x1, y1), ..., (xN(B), yN(B)) ∈ B, where xk, yk are uniformly distributed randomvariables. The pairs {xk}, {yk} are arbitrary random variables and to ensure all thepoints belong to the domain B, a simple linear transformation is applied.The statistial properties of the random variable N(B) are weighted via a on-stant λ and the volume of the ells but an be generalised with λ as a funtion ofposition. Thus, the �rst moment takes a simple form , i.e. 〈N(B)〉 = λvB, see [39℄for more details. In the ase of the generalised Poisson proess, that is when λ(r),
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r ∈ B, the seeds luster together on spei� regions in B depending on the form of
λ. This type of proess is partiularly useful if one is interested in an inhomogeneousdistribution of the regions. For simpliity we have taken λ to be onstant sine itserves to our purposes.In order to de�ne Voronoi tessellation from samples of N(B), N(B) uniformlydistributed points b1, ..., bN(B) in B are generated.The regions that de�ne the Voronoi tessellation as subsets of the Eulidean spaeare de�ned as the open onvex sets

Bk = {x ∈ R
2 | ‖x− bk‖ < ‖x− bl‖, k 6= l} (3.21)Geometrially the regions Bk that tile the entire spae are onstruted by �ndingthe line perpendiular to the segment that onnets two adjaent seed point bk.This onstrution is also valid for generation of polytopes in three dimensions whereplanes are to be found instead of lines. By de�nition of tessellation Bk ∩Bl = ∅ for

k 6= l. The above onstrution is the simplest version of Voronoi tessellation but it

Figure 3.4: The Poisson Voronoi tessellation simulating mirostruture of polyrys-tals. Only a few regions are being showed for illustration purposes. The dots insidethe regions are the seeds from whih regions are grown.an be generalised almost arbitrarily [34℄, where a full range of statistial estimatorsof geometrial features is also reviewed. It is a simple task using open soure soft-ware1 to generate Voronoi tessellation. Fig. (3.4) shows the regions tessellating theset B = [0, 1] × [0, 1] by generating N(B) uniformly distributed random variables1qhull http://www.qhull.org/



Waves in polyrystalline materials 69
bk = (xk, yk) ∈ B. By onstrution, almost everything is known using this numeri-al tehnique for mirostruture simulation, namely area and size distribution of theregions and also their statistial properties. The unitary polytope has been hosenbeause real areas an always be normalised.The simulated mirostruture had two purposes: (1) phase sreens were designedto obtain the representation for the aousti �eld in hapter (3). (2) it has helpedin making a better �rst estimate for the orrelation funtion Γµ haraterising theinhomogeneities as well as the relationship between the orrelation length and themean grain size for real mirostruture.Wave veloity variationsThe idea is to replae the ontinuous model for veloity variation for a disreteversion, the two being statistially equivalent in the seond order sense, that is, twoproesses that have same or similar orrelation funtion. Let σ2 be the variane of
µ and let us simulate the wave number in simulated media as follows: If Bn arethe polygons tiling randomly the entire spae and cn are independent zero meanGaussian variables with variane 1, hene k an be simulated as

k(r) = k0 + k0σ
∑

cn1Bn
(r) (3.22)Here 1Bn

denotes the funtion
1Bn

=







1 r ∈ Bn

0 otherwise .The wave number de�ned in this way relates diretly to the de�ning mirostruture.The regions Bn were generated using Voronoi tessellation enabling samples for thewave number to be reprodued by the algorithm presented in appendix (A.4). Thealgorithm gives the oordinates of the verties de�ning the polytope of the simulatedmirostruture and this an be used to �ll the regions with normal random variablesusing Eq. (3.22).



Waves in polyrystalline materials 70PSfrag replaements

a) N = 1000

σ

b) φ

-15 -10 -5 0 5 10 15

00.20.40.60.81
-101

-2-10
12

Figure 3.5: a) Realisation of the wave number k in a simulated mirostruture show-ing deviations from mean value in arbitrary units. b) A realisation of φ generatedusing Eq. (3.22) by generating the Gaussian variables cn.The spatial orrelation of grain distributionAt this point nothing has been said about the orrelation length l of the proess µand its relationship to the mean grain size of polyrystalline mirostruture.The proess in Eq. (3.22) depends on two random proesses simultaneously,namely the Poisson variable N(B), the uniform variables giving the atual positionof the seed and �nally the Gaussian proess that models veloity �utuation withinthe grains. This dependene ompliates the alulation of the orrelation Γµ de�nedin this form. One would be tempted to ompute an exat expression but that isnot as straightforward as it may look. For the purpose of simulating the aousti�eld this was not neessary but one needs to �nd a relationship between the meangrain size and orrelation length for the proess de�ning the inhomogeneities wherethe wave is to propagate. This relationship is found by the two-dimensional Fouriertransform of Eq. (3.22) and �tting an appropriate funtion to the result.Using the well known Wiener-Khinhine theorem whih says that the autoor-
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Figure 3.6: a) Simulated mirostruture using Voronoi ells. b) The two-dimensionalFourier transform of M normalised to maximum value. ) Comparison of the trans-verse orrelation funtion ΓM as indiated by the dashed line in (b) to Γµ = e−4 τ2

l2to obtain l or ¯̄b.relation is the inverse Fourier transform of power orrelation,
ΓM =

∫

MM∗e−iτtdt (3.23)Here M = ∪kBk is the union of the region that omposed B. This method diretlymeasures the orrelation that two points r1, r2 ∈ M may have, that is Γµ showswhether or not r1, r2 are in the same region. Γµ turned out to be symmetri withrespet to zero as as it an be seen in Fig. (3.6)(b).The Fig. (3.6)(a), shows a simulated grain struture with N regions. Fig. (3.6)(b)is the two dimensional Fourier transform of M , i.e. ΓM whih is a symmetri fun-tion that learly resembles an exponential funtion. The size of the spot of ΓM is



Waves in polyrystalline materials 72proportional to the mean aliper diameter of the regions as shown on the right handside of Fig. (3.6)().This simulation shows that for mirostruture with equiaxed grains the expo-nential funtion Γµ = e−
4τ2

l2 an be used as a good approximation for the orrelationfuntion of the proess aounting for the wave veloity �utuations. The meanalliper diameter ¯̄b was obtained from M and substituted into Γµ showing the resultin Fig. (3.6)().3.4 Conluding remarksA theoretial desription of SAWs in polyrystalline materials has been presentedbased on the full wave theory for elasti polyrystals. The normal displaementgiven by the full theory was redued to a salar desription as a limiting ase. Theadvantages of the salar desription over the full vetorial theory is the simpli�edmathematial desription of SAWs in polyrystalline materials. In this desription,veloity variations within grains an be simply desribed by a single stohasti pro-ess avoiding the ompliated expression arising from tensor proesses. The degreeof inhomogeneity and orrelation length in the salar approah have a diret physialmeaning in relation to mirostruture of the polyrystal.The desription of SAWs in polyrystals using a salar theory has been donewithin the paraxial approximation; this appeared a very restritive approximationbut it will be seen that most of the experimental phenomena observed an be ex-plained within the framework of this approximation.The anisotropy or degree of anisotropy is desribed in terms of the elasti modulibut it has been related to the standard deviation of the wavenumber in the salardesription in suh a simple way that the standard deviation has learly a physialmeaning. The orrelation length of the wavenumber ould also be diretly relatedto the mean grain size of the polyrystal. This relationship is not so obvious aswith the standard deviation beause it uses the hypothesis that the random waveveloity �utuation is an isotropi random proess with a Gaussian orrelation fun-



Waves in polyrystalline materials 73tion. This assumption appears very restritive sine real mirostrutures may be farmore ompliated. To support this idea, a Voronoi model for simulating real mi-rostruture was used to investigate the orrelation funtion of the wave veloity�utuation in polyrystalline mirostrutures. The results showed that for polyrys-tals with mainly onvex equiaxed grains the assumption of Gaussian orrelation is agood approximation. The relationship between the orrelation length of the proessmodelling the harateristis of the medium was also numerially investigated. Thiswas neessary to orroborate that the orrelation length is in fat proportional tothe mean grain size.



Chapter 4
SAW waves in polyrystallinematerials
IntrodutionIn hapter (3) was stated that SAW in inhomogeneous media an be desribedby the stohasti wave equation to a good approximation. This hapter is theontinuation of the statement in that an approximate solution to the stohastiequation is presented. The solution is given in two stages. The �rst one will omprisethe propagation of SAWs in homogenous media. This will follow from theory forSAW in isotropi solids by means of Green's funtion theory. The aousti �eld onthe homogenous half-spae is approximated using the angular spetral expansionfor �elds that satisfy the Helmholtz equation in a homogeneous half spae with noboundaries. This result is used in the seond stage in onjuntion with a phasesreen model for waves in random media to give an approximate solution to thestohasti wave equation.The idea of using the phase sreen model is to approximate the variations of theaousti �eld aused by the mirostruture using a simple model rather than solvingthe stohasti wave equation. This approximation onsideraby redues the math-ematial alulations involved and gives a diret way for obtaining the orrelationfuntion of the �eld. The aberrations of the �eld strongly depend on the hara-



SAW waves in polyrystalline materials 75teristis of the medium. These, were desribed in setion (3.3.3) by the stohastiproess that haraterises wave veloity �utuation; thus phase sreens and wave ve-loity �utuations are funtionally interlinked. This funtional dependeny, omesnaturally sine the phase sreen model and the Helmholtz equation in its paraboliform are related.The overall approah is to divide the region of interest, a slab in this ase, alongone of the axes, and into many layers of equal thikness thus approximating the �eldwithin eah layer by means of a phase sreen and half spae propagation. The totalaousti �eld is then given as a multiple integral. The objetive and onvenieneof this integral representation is to failitate or be able to alulate seond ordermoments of the �eld. These alulations are part of hapter (5) and will not bedisussed here.At the end of this hapter some numerial implementations are disused as partof the overall development. Generation of realisations of the aousti �eld in randommedia implies neessarily generation of a realisation of the proess aounting forthe aberrations. The numerial implementation of phase sreens is done by usingtwo methods. The �rst one has already been introdued in setion (3.3.4) as part ofmirostruture simulation. The seond one, whih is used in this hapter, generatesrealisations by using the orrelation Γµ of proess µ, disussed in hapter (3.3), bymeans of the Fourier transform. A brief disussion of the development of a SAWfrom a series of straight lines evenly distributed is also presented. This type of soureis related to the instrument used in the experimental work presented in hapter (6).A more detailed desription of ultrasound generation from this type of soure isinluded in the appendix.4.1 Propagation in random mediaThe full wave theory presented in hapter (3) inludes SAWs in inhomogeneous aswell as homogeneous media. The homogeneous media is inluded in the theory bysetting the �utuating part c′ to zero of the elasti moduli in the stress-strain rela-



SAW waves in polyrystalline materials 76tionship Eq. (3.4). The homogeneous medium, in priniple, inludes both anisotropiand isotropi materials, but to a good approximation in this thesis the theory is onlyonsidered for the isotropi ase. Thus, from the elastiity Eq. (3.10) it is possible todesribe SAWs in a homogeneous isotropi material. This is done by providing ex-pliitly the Green's funtion of Rayleigh waves developed in [17℄ for the point soureexpansion. The expliit desription of SAWs in homogenous media is important forthe approximation of SAWs in the inhomogeneous ase, so it will be developed �rst.An important point, whih will demonstrated, is that SAWs an also be given asa solution of the Helmholtz Eq. (3.11) in the homogeneous half spae. From this,and some intuition, it is possible to onlude that SAWs in the inhomogeneous aseare also given by Eq. (3.11) using the phase sreen model. Although, a mathemat-ial justi�ation is not as simple as for the homogenous ase, it is important toshow that a desription of SAWs in inhomogeneous media an also be given by thestohasti equation, Eq. (3.11). This is beause seond order moment or orrelationfuntion theory of the salar aousti �eld is mostly based on Eq. (3.11). Most ofthe mathematial development in this hapter is left for an appendix, speially thealulations of the �eld using phase sreens.4.1.1 Displaement from a line soure in the half spaeThe theoretial development presented in this setion by means of Green's fun-tions applies to any type of soures for SAW generation. The Green's funtion isindependent of the soure utilised for SAW generation. In this setion however,the normal displaement depends on a laser pro�le. The reason for that is beausethe mathematial development to represent point soures has been done within theframework of SAW generation by thermal expansion using lasers in [17℄. This ouldhave been removed for the sake of generality in this thesis but it is important to keepit that way beause experimental work is mainly onerned with laser ultrasonis.The desriptions of line soures are required beause the instrument to arry out theexperimental work uses a line soure for SAW generation. But again, the approahis not on�ned to line soures.



SAW waves in polyrystalline materials 77The soure S is assumed to lie within the plane xz and �nite in the x, z axis asdepited in Fig. (4.1). Thus, the (x, y, z > 0) oordinate system will represent thehalf-spae of a homogenous or inhomogeneous material. The elasti wave Eq. (3.10)give as a result the displaement in every diretion. For the geometry being on-sidered, the SAW will be the normal displaement to the xz plane. This is thedisplaement in diretion y.The position of the soure is in the plane xy at z = 0. The soure region S isrepresented by a di�erent set of oordinates (α, β) and its dimension is ompletelydetermined by a, b. The additional oordinate system (α, β) is neessary to integrateall the ontributions from point soures ontained within the region S generating theSAW. In the geometry of Fig. (4.1) partiles within the material are supposed to be
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Figure 4.1: Geometry of SAW on the half-spae generated by a line soure S.motionless along the x-diretion. The only motion that matters in SAW waves is thediretion of propagation along z and the upwards and downwards partile motionalong y−axis. In the general ase one would have displaement in all diretionsand the boundary problem is solved by giving an appropriate Green's funtion thatrepresents displaements in eah diretion.Let uy0 be the normal displaement given by solving equations Eq. (3.10) of apoint soure for the geometry shown in �gure Fig. (4.1). The Green's funtion for alinearly elasti isotropi material from a point soure is developed in [17℄, thus the



SAW waves in polyrystalline materials 78normal displaement uy0 due to a point soure is given by
uy0(r, t) = Aq(t)⊗ H(t− sRR)

√

t2 − s2
RR2

(4.1)where A is a onstant that depends on the material properties. All the onstantsinvolved in de�ning A are given in appendix (A.6). The funtion q(t) is the laserenvelope used to generate a point soure on the surfae of the materials. H is thestep funtion and sR = 1
cR
, with cR being the mean Rayleigh wave veloity. Here,the variable t represents time.Adding all the ontributions emanating from eah point with the region oupiedby the soure S is equivalent to integrating uy0 over the region S weighted with anappropriated funtion representing the spatial energy distribution. Let w(α, β) bethat spatial laser pro�le, then the displaement, denoted by uy(r, t) at r = (x, z)away from the soure is

uy(r, t) =

∫∫

S

w(α, β)uy0(R, t)dαdβ

=

∫∫ ∞

−∞
Πabw(α, β)uy0(R, t)dαdβ (4.2)where R =

√

(x− α)2 + (z − β)2. In order to be able to integrate Eq. (4.2) it isneessary to know w expliitly. A very detailed disussion of the funtion w is givenin setion (4.1.5) where uy will be plotted in the frequeny domain.The integration over the soure was hanged to in�nity and this is possible, onlyin this ase that S is a line, beause of the introdution of the step funtion in twodimensions, that is
Πab =



















1 |α| ≤ a

1 |β| ≤ b

0 otherwise (4.3)where a , b is the width and length of S, respetively.A further step in this development is to substitute the expression for uy0 in theabove integrals and transformed into the frequeny domain. The transformation



SAW waves in polyrystalline materials 79from the temporal to the frequeny domain is both for mathematial onveniene andalso beause the experimental work was arried out at a single frequeny. Therefore,the displaement is transformed into the frequeny domain by taking the Laplaetransform on both sides of Eq. (4.2). The transformation is simpli�ed by using theonvolution theorem. In doing so one has
L[uy0] = AL[q]L[g] (4.4)where L is the symbol denoting the Laplae transform and g = H(t−sRR)√

t2−s2
R

R2
.Before proeeding any further let us reall that the Laplae transform of theGreen's funtion is the modi�ed Hankel funtion H

(1)
0 , hene

L[g(x, z; α, β)] =
iπ

2
H

(1)
0 (k̄R) (4.5)where k̄ = ω

cR
, see [78℄ page 288.Denoting the Laplae transform of uy by u and applying the Laplae operator Lto both sides Eq. (4.2) after inserting Eq. (4.4),Eq. (4.5) gives
u(r, ω) = AL[q(t)]

∫∫

S

w(α, β)L
[

H(t− sRR)
√

t2 − s2
RR2

]

dαdβ (4.6)
=

iπA

2(iωτ + 1)2

∫∫

S

w(α, β)H
(1)
0 (k̄R)dαdβ (4.7)Note that L[q(t)] = 1

(sτ+1)2
, with s = iω and ω is the angular frequeny.The above representation for the displaement an be easily evaluated sine theHankel funtion has been numerially implemented elsewhere. However, a betterrepresentation for numerial evaluation is to expand H

(1)
0 in plane waves.This an be aomplished by realling that H

(1)
0 an be expanded in plane wavesin the same manner as u. After the insertion of this expansion for the Hankel
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u(r, ω) =

iπA

2(sτ + 1)2

∫∫∫

Παβw(α, β)
eik̄(x−α)p+ik̄(z−β)

√
1−p2

√

1− p2
dαdβdp

u =

∫

a(p, ω)eik̄xp+ik̄z
√

1−p2
dp (4.8)where

a(p, ω) =
iπA

2(iωsτ + 1)2

∫∫

Παβw(α, β)
eikαp+ikβ

√
1−p2

√

1− p2
dαdβ (4.9)and the variable p denotes spatial frequenies. The funtion a looks ompliatedbeause of the double integration over the weight funtion w and plane waves. Thisapparent ompliation an be overome by simply realising that

u(x, 0, ω) =

∫

a(p)eik̄pdp (4.10)In other words, the angular spetral representation is the Fourier transform of theinitial displaement evaluated at the spatial frequenies k̄p. In summary, the alu-
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SAW waves in polyrystalline materials 81expansion of the �eld and the frequeny omponents of the laser are the frequenyomponents of the displaements. As it an be seen the important quantity here isthe initial displaement at z = 0. In the experimental setup the idea was to propa-gate a plane wave but beause of the �nite size of the soure it beomes a trunatedplane wave. Thus, ideally the normalised initial displaement would be
u(x, 0, ω) =







1 x ∈ [−a
2
, a

2
]

0 otherwise (4.11)Using this in Eq. (4.8) the resulting displaement of the �eld is shown in Fig. (4.2).Fig. (4.2)(a) is the amplitude of the normal displaement and initial displaementgiven by Eq. (4.11) whereas Fig. (4.2)(b) shows the phase. The wave propagatesfrom left to right.It is now easy to reognise that the last expression in Eq. (4.8) is the angularspetral representation of the normal displaement u(r, ω), as developed in [70℄. Itis straightfroward to hek that u(r, ω) satisfy Eq. (3.11) sine eikxp+ikz
√

1−p2 is aplane wave satisfying the Helmholtz equation.4.1.2 Propagation through a random thin layerIn setion (4.1.1) the normal displaement or SAW was developed for homogenousisotropi materials. This result is used in the present setion for SAWs in inhomo-geneous media. Spei�ally, an approximation for the aousti �eld will be given inthe slab (x, 0 ≤ z ≤ L) ontaining inhomogeneities. In order to ahieve that, theregion of interest is divided in layers of equal thikness δz along the propagationdistane, in this ase the z axis. Thus, the geometry will be as in (4.1.1), �gureFig. (4.1).The displaement u(r, ω) in Eq. (4.8) is frequeny dependent. In this thesis, asingle frequeny will be needed for omparison with the experimental work. Thedesription of the SAW in this setion therefore will be in the frequeny domain.The frequeny will be dropped from the notation for the rest of the hapter as it



SAW waves in polyrystalline materials 82will be understood that the displaement depends on it. The �rst step in ahieving
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δzδzFigure 4.3: Shemati representation of ultrasoni propagation in a random mediumusing phase sreen theory.propagation in a random slab is to onsider a thin layer of thikness δz and inident�eld v = u(x, 0) to the layer, as shown in Fig. (4.3)(a). Some assumptions have tobe made in order for this approximation to work. Firstly, that forward satteringwithin the layer is stronger than bakward sattering so it an be negleted to agood approximation. As a result, the phase of the �eld will be the only one a�etedleaving the amplitude unhanged. Seondly, the layer is thin enough for all pointsbelonging to the wavefront of the �eld to follow approximately straight lines. Thismeans that the phase hanges an be represented by a phase sreen. Essentially, aphase sreen is a omplex number eiφ where φ is a random proess representing theharateristi of the medium. Below, it will be seen how the proess φ is relatedto proess µ aounting for wave veloity �utuations, whih was �rst mentioned insetion (3.3.1).Let us onsider the situation as shown in Fig. (4.3). The idea is to substitutethe �eld within the inhomogeneous region Fig. (4.3)(a) by the inident �eld to thelayer times a omplex number or phase sreen that depends on the harateristisof the medium. The phase sreen is loated in the middle of the layer as shown inFig. (4.3)(b). The approximation is as follows: instead of solving Eq. (3.11) withinthe random layer, the inident �eld v is propagated in a half spae using Eq. (4.8)to a distane δz
2
, then the resultant �eld is multipled by a phase sreen eiφ, whihgives the normal displaement u(x, δz

2
) behind the sreen.



SAW waves in polyrystalline materials 83Let us denote by uin the �eld from 0 to δz
2
in half spae having v as soure at

z = 0, thus the �eld behind the sreen an be written as
u(x, z) = uin(x, z)eiφ(x) (4.12)The inhomogeneous medium has been replaed by a phase sreen that modi�es thephase leaving the amplitude unhanged. The situation is depited in Fig. (4.3)(b)where the sreen is being represented by a thin box. The phase sreen has beenalloated in the middle of the slab but it ould have been at the entrane of thelayer.In the ontinuous model v is expeted to follow random paths whih dependon the statistis of the medium, in this ase the proess µ, whereas in the presentsituation, the impliit assumption is that those paths are indeed straight lines. Thephase φ, therefore, has the following funtional dependene [95, 57, 60℄ as
φ(x) =

k0

2

∫ δz

0

µ(x, z′)dz′ (4.13)The Eq. (4.13) indiates that the overall phase hange experiened by the �eld is infat the integrals of all possible hanges indued by the inhomogeneities within thelayer. Again, the reason for the appearane of the proess µ in Eq. (4.13) is beauseit has been assumed that u within the layer is approximately given by solving thestohasti Eq. (3.11). It has to be said, that the funtional dependeny Eq. (4.13)is only valid in ase of weak baksattering or equivalently if the �eld is given bythe paraboli form of Eq. (3.11), see [60℄.To end this, the �eld u in Eq. (4.12) is again propagated in the half spae to adistane δz
2
. Thus, by taking the Fourier transform with respet to x of Eq. (4.12)and using Eq. (4.8), and reverting bak again to the spatial domain by performingthe inverse transform gives the angular representation for u in a random medium asfollows:

u(r) =

∫

[v̂(p)h(p,
δz

2
)⊗ ŝ(p)]h(p,

δz

2
)eipxdp (4.14)



SAW waves in polyrystalline materials 84Here v̂, ŝ denote the spatial Fourier transform of v and s = eiφ, respetively. Thefollowing substitution has been made, h = eik̄px+ik̄z
√

1−p2 to represent the funtionpropagator to simplify Eq. (4.14). The symbol ⊗ stands for spatial onvolutionbetween two funtions. A �eld propagating through an inhomogeneous layer hastherefore been approximated by distorting the phase of its elementary omponentsby φ. In order to extend the above development to the entire domain (x, 0 ≤ z)the �eld is expressed in the Fourier domain by relabelling the �eld to indiate thenumber sreens and their preise loation within the region (x, 0 ≤ z). This isexplained in great detail in the following setion.There is an important point to bear in mind. The thikness δz is taken to be ofthe order of the orrelation length of k(r), see setion (3.3.3) for a preise meaningof the orrelation length.4.1.3 Propagation through many layersLet us divide the slab D = (x, 0 ≤ z) in N layers of thikness δz and let us assume,for the sake of symmetry, that the sreens are loated at δz
z
. The phase hange foreah sreen is relabelled as φn(x), let ŝn be the Fourier transform of s = eiφn(x).The situation within the nth layer is shematially showed in Fig. (4.4). In order toapproximate the �eld within the slab D formulation Eq. (4.14) is applied reursivelyfor eah layer. As the inident �eld v is propagated from one layer into anotherthe phase sreen reursively multiplies as well as the funtion h. Beause u hasbeen expressed as a integral as well as a onvolution, equation Eq. (4.14), the �nalexpression would be given as a multiple integral. To express the long representationin a single expression let us label the �eld with eah layer by un, thus un representsthe �eld at distane nδz away from the soure. For eah layer, one needs a set ofdi�erent dummy variables to represent the �eld as in Eq. (4.14), thus let pn be thatvariable and making hpn

= h(pn,
δz
2
).Assuming that v propagates to a distane nδz, and taking into aount that

F [un(x, nδz)eiφn(x)] = ûn(pn, nδz)⊗ ŝ(pn) (4.15)
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Figure 4.4: Shemati representation of the nth layer replaed by the phase sreensystem. The sreen s = eiφn is being alloated in the middle of the layer.where F is the Fourier transformation operator, by using Eq. (4.14), the �eld in thefrequeny domain at the exit of the nth layer an be expressed as
ûn+1 = [ûnhpn

⊗ ŝn]hpn+1

= hpn+1

∫

ûn(pn)hpn
ŝ(pn+1 − pn)dpn (4.16)The onvolution is the operation of propagating the �eld through a random sreenand multipliation again by hpn+1 propagates ûnhpn
⊗ ŝn to the entrane of the nextsreen thus beoming the new inident �eld. In appendix (A.2), it is shown howto express the �eld in the following multiple integral representation by substitutingthe reurrent integral representation Eq. (4.16) for un , thus the total �eld u = un+1an be expressed as

u(x, z) =

∫

· · ·
∫

v̂(q0)
n−1
∏

n=0

h2
qj

ŝ(qj+1 − qj)

×eik0qnxdq0 · · · dqn (4.17)Equation Eq. (4.17) represents the ensemble of aousti �elds in a random medium.The dependeny on s makes u a random proess that depends on the statistialproperties of µ beause of the funtional dependeny Eq. (4.13). Equation Eq. (4.17)will serve as a basis to alulate the seond moments 〈uu∗〉 of the �eld. It is a



SAW waves in polyrystalline materials 86multiple integral and there are as many integrals as there are sreens used for theapproximation, however it is omputationally e�ient as these an be implementedusing the FFT algorithm.The �eld u is a random proess that depends entirely on the statistial propertiesof the proess φ; thus generation of realisations of the �eld within the slab D willfollow from the realisation of φ. The realisation of φ in turn depends on the statistisof µ via the relation Eq. (4.13). The onstrution of the realisation for φ is based ona given orrelation funtion for µ whih is disussed in the next setion. A realisationof u will then be given by evaluating Eq. (4.17) by substitution of the appropriaterealisation of sreens.4.1.4 Realisation of phase variationsThe realisation of the �eld u depends on the proess φ aounting for phase varia-tions. This proess depends diretly on the properties of the medium, whih is beingrepresented by the proess µ earlier introdued in setion (3.3.3).In setion (3.3.4) a method was then introdued to generate realisations of theproess φ. It was based on simulation of wave veloity variations within mirostru-ture by onstruting a proess µ that depends on geometri harateristis. Theorrelation funtion of µ was also investigated, with the onlusion that as a goodapproximation it ould well be onsidered to have an exponential form. This is thestarting point to generate a realisation of the phase φ in this setion. That is, itwill assume a known orrelation funtion for µ and from this the required phaserealisations will be generated by using the Fourier transform method.Fourier method for phase generationLet us start by assuming the proess µ has the known orrelation funtion Γµ,having the exponential form σ2e−|r|2/l2 , where again σ2 is the variane of µ and l isthe orrelation length. Therefore, generation of realisations of φ is equivalent to thegeneration of realisation of the proess µ by means of orrelation Γµ and relationEq. (4.13). Although, not essential for the present development, it is important to



SAW waves in polyrystalline materials 87mention that, in hapter (5), the relationship between the struture funtion of φand the orrelation funtion Γµ is investigated.The Fourier method for generating a realisation of a proess is as follows: Letus denote the power orrelation of µ by Sµ and let W (ω) be omplex white noise,i.e. a omplex zero Gaussian proess with orrelation 〈W (ω)W ∗(ω′)〉 = δ(ω − ω′).Then µ admits the following spetral representation
µ(x) =

∫

W (ω)
√

Sµ(ω)eixωdω (4.18)Thus, realisations are simply given by taking the Fourier transform of the produt ofa Gaussian noise and the square root of the power orrelation of µ. This method hasthe advantage of being easily implemented by using the disrete fourier transform.Generation of realisation from Eq. (4.18) ats as a �lter for W giving a smoothrealisation ompared to Eq. (3.22), in Fig. (3.5). The fat that the proess µ has
Γµ as orrelation funtion follows from the Wiener-Khinhine theorem for randomproess, thus

〈µ(x)µ(x′)〉 =

∫∫

W (ω)W (ω′)
√

Sµ(ω)Sµ(ω′)eixω−x′ω′
dωdω′

∫∫

δ(ω − ω′)
√

Sµ(ω)Sµ(ω′)eixω−x′ω′
dωdω′

=

∫

Sµ(ω)eiω(x−x′)dω

= Γµ(x− x′) (4.19)In hapter (3) it was stated that a good approximation in representing mirostru-ture of ertain polyrystals is when Γµ has exponential form. Taking this intoaount, realisations for φ are generated using the disrete Fourier transform fromEq. (4.18). Fig. (4.5) shows the orrelation Γµ (top graph), a single realisation ofthe white noise W
√

Sµ and a superimposed plot of the pro�le √

Sµ. On the bottomof Fig. (4.5), is shown a realisation of φ using this method.In setion (3.3.4) we showed how to generate mirostruture using Voronoi tes-sellation. This method also give a straightforward way to generate realisations of the
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SAW waves in polyrystalline materials 89proess φ, as shown in the same setion. It was also shown that the autoorrelationof the generated mirostruture is an exponential funtion. Therefore, the Fouriermethod with exponential autoorrelation and the one desribed in setion (3.3.4),for generating realisation of the proess φ are equivalent. In the former, it is onlyneessary to alulate the Fourier transform of a known funtion whereas in thelatter it is neessary to build the tessellation and olour the regions. Colouring theregions in this ontext means speifying the veloity variations within regions, asexplained in setion (3.3.4). The algorithm for tesellating the spae and de�nitionof wave veloity variations within the regions is a slow proess. This is why theFourier method was preferred, sine it is simple and fast. This method will be usedfor the rest of the thesis for generating realisations of the proess φ.4.1.5 Realisation of the aousti �eldBefore showing a realisation of the �eld based on Eq. (4.17) it is neessary to speifythe inident �eld. It was said in setion (4.1.1) that the Fourier transform of theinident �eld is the angular spetrum of u. But the angular spetrum a, Eq. (4.9)is an integral over a laser spatial pro�le w(r) whih was not spei�ed. Here forompleteness a Gaussian pro�le is presented, although already mentioned in setion(4.1.1), it is not neessary to speify the inident �eld. The (4.6) shows a plot of
Πab(r)w(r); note that Πabw is rounded on top, this is beause w has been assumedto be a Gaussian pro�le, i.e. w = e−|r|2/c2, where c is a parameter de�ning the widthof w. Many lasers have Gaussian distribution [64℄, so w an fairly be desribed witha Gaussian pro�le. Here, again for pratial purposes the inident �eld is taken tobe of the form Eq. (4.11). Thus, by using Eq. (4.17) and realisations of φ alreadygenerated in setion (4.1.4) is possible to give a realisation of the �eld u whihis shown in Fig. (4.7). Fig. (4.7) shows the amplitude distribution numeriallyimplemented from Eq. (4.17). It is a trunated plane wave propagating in thesimulated inhomogeneous medium haraterised by standard deviation σ = 0.02. Asthe wave travels from left to right (z-diretion) the phase is being altered by sreensplaed to approximate the �eld within a layer. The overall phase is distorted as well
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SAW waves in polyrystalline materials 91as the amplitude distribution breaking up as it an be seen in the Fig. (4.7). Thisshows what to expet to happen to the aousti surfae waves propagated in realpolyrystals, whih an be ompared to Fig. (1.1) showing aberrations in aluminium.4.1.6 Solids in generalSo far the theory just developed applies mainly to isotropi solids. The angularspetrum representation is a powerful tool that an even be extended to more generaltype of solids.In the artile [96℄, a paraxial theory for ultrasoni beams was developed foranisotropi solids. The integral representation of the �eld is basially an angularexpansion based essentially on Taylor series expansion of the slowness surfae. Theargument in the exponential funtion of the integrand in Eq. (4.9), however, involvesrossed and quadrati terms leading to a ompliated angular expansion. The ad-vantage of that formulation is that the isotropi ase is easily obtained as a limitingase.Here, for simpliity the isotropi ase was only onsidered sine the anisotropiparameter is lost in polyrystalline materials as part of a random e�et from mi-rostruture.4.2 ConlusionsA model that aurately represents line soures for ultrasound generation has beenpresented. The mathematial development uses the method of Green's funtion toexpress the elasti response of a homogenous medium. This mathematial formula-tion gives expliitly the Green's funtion of the normal displaement for a thermoe-lasti point soure. By integrating the Green's funtion aross the area oupied bya line on the sample surfae, an expression for the normal displaement is given asa plane expansion. This representation was later used in setion (4.1.2) to approxi-mate the �eld in an inhomogeneous medium using a phase sreen model.One of the parameters diretly involved in the desription of sreens to ap-



SAW waves in polyrystalline materials 92proximate the �eld is the standard deviation. This parameter in the salar modeldeveloped in setion (3.3.2) is diretly related to the anisotropy of the grains whihin turn desribes the strength of the sreens.The expression obtained for the �eld is given as multiple integrals that anbe e�iently implemented using the FFT. The other important property of thisrepresentation is the possibility of alulating the seond order moments of the �eldby using Eq. (4.17), whih is developed in great detail in hapter (5).It is believed that the representation Eq. (4.17) is a fair approximation sineit explains most of the observed phenomena in polyrystalline materials with mi-rostruture haraterised by an exponential orrelation funtion. Naturally, thismust be ombined with the general assumption listed in setion (3.2).The representation (4.17) is assessed by omparison via the seond order mo-ments of the �eld in hapter (6).



Chapter 5
Propagation of orrelation funtion
IntrodutionThis hapter desribes the theory of propagation of the orrelation funtion or, interms of stohasti proess, the seond order moments. The aim is to determinean expression for the ensemble average Γu = 〈u(r)u∗(r′)〉, where u is the proessrepresenting the aousti �eld. The orrelation funtion is important sine it isdiretly related to the geometri harateristis of the medium. In hapter (3.2),grain struture was desribed via the orrelation funtion of the wave number. Thisorrelation will be seen to be diretly related to the orrelation Γu of the �eld byalulating the ensemble average using Eq. (4.17), in the �rst plae.The propagation and the determination of this funtion through random mediahave been given in the literature [70, 97, 47℄. In these papers, many onstraintsare imposed on proesses de�ning the medium in order to approximate 〈u(r)u∗(r′)〉.The assumptions introdued here are not that di�erent from the ones proposed inthe literature, in partiular that µ is isotropi in transverse diretions and almostdelta orrelated in the diretion of propagation. By de�nition a proess µ is deltaorrelated if its orrelation is of the form Γµ = δ(z − z′)f(x − x′), where δ is theDira delta funtion and f is an arbitrary funtion. Other assumptions have beenalready introdued in the previous hapter (3), setions (3.3.2) and (3.3.3) and theywill ontinue to hold.



Propagation of orrelation funtion 94The expression for 〈u(r)u∗(r′)〉 is given by two di�erent points of view that di�erin the way the ensemble average is obtained. The �rst one is a diret appliation ofphase sreens to obtain an approximate solution to Γu using the integral represen-tation for the �eld Eq. (4.17).The assumption on the proess µ of the inhomogeneity �utuations, is that thephase �utuations φ are Gaussian. This property is used to alulate the ensembleaverage of the �eld based on a standard result in multivariate statistis that isvalid for the Gaussian stohasti proesses. The orrelation, however, is alulatedtransversally, whih is de�ned as the ensemble average 〈u(x, z)u∗(x′, z)〉 for eah z.The variable z here denotes propagation distane.The seond point of view uses the Helmholtz equation to approximate Γu, whihsatis�es a di�erential equation derived in the literature [47℄. There are some tehnialproblems within the phase sreen tehnique that annot easily be solved. The strongassumption that rays do not bend onsiderably within a layer not only restrits thesuitability of the method but also the orrelation funtion depends on the numberof sreens used to approximate the �eld within the slab.To remedy this in some way the orrelation funtion of the �eld, based entirelyon the stohasti equation, is given in a heuristi manner in setion (5.2). This al-ternative approximation would also justify the feasibility of the phase sreen methodin approximating the orrelation funtion sine the two oinide.One of the reasons for obtaining the orrelation funtion of the �eld is to relateit to the orrelation of the medium. The grains are assumed to be equiaxed, thus ameasure in any diretion would give a reliable quanti�ation of the mean grain size.The importane of the orrelation funtion Γu is that aberrations an be quanti-�ed by means of this funtion, whih is determined by two main parameters de�ningthe medium. These are the orrelation length and the standard deviation of µ thatmeasures the degree of inhomogeneity.



Propagation of orrelation funtion 955.1 Moments of the aousti wave �eldThe seond moment of the aousti �eld by de�nition is the ensemble average
〈u(r)u∗(r′)〉, where r = (x, z) will denote a point in the two dimensional oordi-nate. The seond moment for any stohasti proess will be denoted by Γu if u isthe proess being onsidered. Thus, for instane the seond moment for the proess
µ is already de�ned and neessary in what follows

Γµ = 〈µ(r)µ(r′)〉 (5.1)The rest of the notation neessary for the mathematial development will be intro-dued within the text.5.1.1 Initial orrelation funtionThe starting point in alulating the orrelation funtion is to introdue the orre-lation of the inident �eld v to a slab as in the boundary problem Eq. (3.11). Thisinitial value for the �eld at z = 0 ould, in priniple, be a random proess with pre-sribed statistial properties. What is needed here in order give an approximationto Γu is the initial form of Γv. The proess v(x) an be non-stationary or a widesense stationary random proess. If v is non-stationary, the orrelation funtion Γvwill not be independent under translation, spei�ally 〈v∗(x)v(x + τ)〉 will dependin general on the point x in spae, where τ = x − x′. Thus, Γv is de�ned as theenergy orrelation funtion of a random proess as
Γv(τ) =

∫ ∞

−∞
v∗(x)v(x + τ)dx (5.2)It is well known that under stationary onditions the average Γv is in�nite. In thisase it is meaningless to onsider Eq. (5.2); the power orrelation funtion

Γv = lim
X→∞

1

X

∫ X

−X

v∗(x)v(x + τ)dx (5.3)



Propagation of orrelation funtion 96has to be onsidered, instead. The integral in Eq. (5.2), is known as the autoor-
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Figure 5.1: Idealised orrelation funtion of the �eld at z = 0. The width a deter-mines the size of the sourerelation funtion in signal proessing for omplex signals. For omparison with theexperimental work it is su�ient to give the initial form of Γv as a funtion of τonly. This funtion will be the autoorrelation of the initial displaement Eq. (4.11)onsidered in setion (4.1.1). Thus, Γv has a triangular form as shown in Fig. (5.1).5.1.2 The struture funtion of the mediumThe struture funtion of a proess is of great importane in optis and atmospherialulations [47℄. Here it is introdued as it arises in the alulation of the orrelationfuntion.The statistial harateristis for the proess µ have already been introduedin hapter (3) where it was needed for building ensembles of the proess. Theorrelation Γµ was then used to build realisations of the phase �utuations φ. Thestruture funtion of φ is introdued as it will be used for the alulations of Γuin the following setion. This is de�ned as the ensemble average of the squareddi�erene of φ at two di�erent points in the transverse axis of oordinates, thus
Dφ =

〈

[φ(x)− φ(x′)]2
〉 (5.4)



Propagation of orrelation funtion 97The proess φ has a funtional dependene on µ, equation Eq. (4.13), and hene onewould expet to be able to express Dφ in terms of µ. This an only be done if µ holdsertain properties. Let us suppose that Γµ an be split as Γµ = f(x, x′)g(z, z′) where
f , g are arbitrary funtions that depend on x− x′, z − z′, respetively. The reasonfor splitting Γµ in the above form omes from the fat that in the end an exponentialfor Γµ is taken sine it ould aurately represent the measured orrelation of theaousti �eld. The exponential form would trivially satisfy this ondition. It islear from the above de�nition that f is the orrelation of two points along theaxis x, whereas g is the orrelation of µ at two arbitrary points along axis z. Thefuntions f and g in general would be determined by di�erent orrelation lengths thatdetermine the sale of the grains along x, z axes, respetively. Earlier in hapter (3),the grains were assumed to be equiaxed, and so to speak of two di�erent orrelationsis meaningless at this point.Here, the proess φ has the same meaning as in Eq. (4.13) but without the fator
k0/2 and the limits of integration are from 0 to z, hene

φ =

∫ z

0

µ(x, z′)dz′ (5.5)Inserting Eq. (5.5) in de�nition Eq. (5.4) after using the assumption on Γµ thestruture funtion Dφ is given by
Dφ =

∫∫

〈[µ(x1, z
′)− µ(x2, z

′)][µ(x1, z
′′)− µ(x2, z

′′)]〉 dz′dz′′

=

∫∫

f(x1, x1)g(z′, z′′)− f(x1, x2)g(z′, z′′)

−f(x2,, x1)g(z′, z′′) + f(x2, x2)g(z′, z′′)dz′dz′′ (5.6)Sine f depends on the di�erene at two di�erent points it follows that f(0) =

f(x1, x1) = f(x2, x2), f(x1, x2) = f(x2, x1) and is obviously independent of z', z′′,thus the struture takes the �nal form
Dφ = 2[f(0)− f(x1, x2)]Ψ(z) (5.7)
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∫ z

0

∫ z

0
g(z′, z′′)dz′dz′′.The integrals de�ning Ψ an only be alulated in a spei� form if g is assumed.In the paragraphs below Dφ is spei�ed for the ase when g bears an exponentialform. To be onsistent with notation for the rest of the alulation f is again denotedby Γµ, even when it only represents transverse orrelation.The exponential orrelationUltimately, the �nal form of Γµ used for omparison with the measured orrelationfuntion has the following form Γµ = exp[− (x−x′)2+(z−z′)2

l2
], thus g(z, z′) = exp[(z −

z′)2/l2] and Ψ after substitution of g following a hange of variable lξ = z′ − z′′ ,
lη = z′ + z′′ takes the form

Ψ(z) =

∫∫ z

0

e−(z′−z′′)2/l2dz′dz′′

=
l2

2

∫∫ 2z
l

0

e−ξ2

dξdη

=

√
πlz

2
erf(2z

l
) (5.8)The funtion erf() introdued in the last step above is the familiar error funtion,whih is basially Ψ up to some onstant fators. Substituting the above integral inEq. (5.7) one gets

Dφ =
√

πlzerf(2z
l

)[Γµ(0)− Γµ(x1, x2)] (5.9)The relationship between the struture funtion of the proess φ and material prop-erties is evident from Eq. (5.9). As presented in setion (3.3.3), the orrelation Γµdiretly haraterises properties of the medium, whih de�nes the struture funtion
Dφ of the proess φ in Eq. (5.9). A plot of Dφ is shown in Fig. (5.2) at arbitrarydistanes. The shape is given by the normalised orrelation funtion

γµ = 1− Γµ(τ)

Γµ(0)
(5.10)
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Figure 5.2: The struture funtionDφ plotted over the normalised axis τ
l
propagationdistanes z = 1/3l, 1/2l, 1/l.As shown in the graph the funtion γµ narrows as the multipliative fator√πlzΦ(2z

l
)Γµ(0)inreases for di�erent z = 1/3l, 1/2l, 1/l. The values for z were hosen arbitrarily.The behaviour of this funtion is ditated mainly by the parameters l, Γµ(0) thatare kept onstant in plotting this graph. As we shall see these parameters willompletely de�ne the orrelation funtion of the �eld Γu.5.1.3 Multiple sreensThe alulation of the orrelation Γµ requires integration on several variables, soan independent oordinate system is attahed to eah sreen. Sine the orrelationinvolves the averages at two arbitrary points in the transverse oordinates let usdenote them by x and y leaving z for the diretion of propagation as before. Let

x = (x0, ..., xn), z = (z0, ..., zn) and denote their oordinate di�erenes by x− =(x1−
x0, ..., xn−xn−1); the same de�nition would apply for y− and z− as well. The phasevariations at eah sreen are labelled by sub-indies to indiate whih sreen they



Propagation of orrelation funtion 100belong to. If φ0(x0), ..., φn(xn) are the phase variation at eah sreen, then
Ds(τs) =

〈

[φs(xs)− φs(ys)]
2
〉 (5.11)will denote the struture funtion for phase variations at eah sreen. An extravariable y is needed sine the struture funtion is alulated at two di�erent pointsin the transverse diretion. In general Ds is not a funtion of the di�erene τs =

xs − ys but one has to assume this in order to alulate Γu. This point has alreadybeen disussed in setion (5.1.2). The Ds, s = 1, 2, ... are essentially the samefuntion but de�ned on di�erent oordinate systems for tehnial reasons.Following this notation and aording to phase sreen approximation the multi-variate sreen would be
s(x) = ei

P

s φs(xs) (5.12)The proess of propagating v from one sreen into another aording to Eq. (4.14) isthat every time the �eld is distorted by a sreen the phase variation adds up resultingin Eq. (4.17) if written in several variables. One ould all s a multivariable sreen;
s is a random proess determined ompletely by the proesses φs. In the ase whenthe φs are Gaussian proesses, it is possible to obtain the seond moment of s asa funtion of the struture funtions Ds. In appendix (A.1) it is shown how theensemble average 〈s(x)s∗(y)〉 is related to the struture funtion Eq. (5.4) by usinga standard result in multivariate statistis [64℄; in doing so

〈s(x)s∗(y)〉 = e−
P

s Ds(τs) (5.13)The average Eq. (5.13) will be in the end an exponential funtion but it will be seenthat for alulating Γµ it su�e for Ds to depend on the di�erene xs−ys; proesseswith this property are alled loally isotropi.



Propagation of orrelation funtion 1015.1.4 Correlation funtion by averaging over the ensembleThe �eld at the entrane of eah sreen shall be denoted by un and the Fouriertransform for all the funtions onsidered here is denoted by the hat symbol, so forinstane ûn is the Fourier transform of un.In general, un may be statistially related to φ for a single layer, beause as vpropagates from layer to layer, un depends on φ. It will be shown that it is possible,at least mathematially, that the energy orrelation of the �eld an be alulated ifthe medium is statistially independent of the inident �eld.The Green's paraboli funtionThe Green's funtion for the Helmholtz equation is well known, and in appendix(A.3) the Green's funtion for the Helmholtz equation in the paraxial approximationis given and has the following form
g(x− x′, z − z′) = (1 + i)

√

k

4π(z − z′)
e

ik
(x−x′)2

2(z−z′) (5.14)The Eq. (4.17) is written in the spatial frequeny domain and the atual alulationof Γµ is performed in the spatial domain. Hene rewriting Eq. (4.17) in the spatialdomain the funtion g arises ating as a propagator. For a derivation of the Green'sfuntion g from the angular representation of the �eld see [64℄.As in the ase of the sreens, the multiple propagation through sreens re-sults in multipliative funtions if written using several variables. That is, ateah sreen, let us say the s-th sreen, one has to onsider the following produt
g(xs− xs−1, zs)g

∗(ys− ys−1, zs). Multiplied altogether one has to de�ne a multivari-able Green's funtion.The funtion propagator in several variables or the multivariable Green's funtionis simply the multipliation of the Green's funtion Eq. (5.14) by its onjugate



Propagation of orrelation funtion 102evaluated at every single oordinate xs, thus
G(x, z) =

n
∏

s=1

g(x−
s , z−s ) (5.15)where x−

s = xs − xs−1. The funtion G is a deterministi funtion bearing no rela-tion with the ensemble average but the fat that it is a multidimensional Gaussianfuntion onsideraby simpli�es the integration. This is one of the reasons in makingthe paraboli approximation sine it is possible to give a simple expression for theorrelation funtion.Calulation of ΓµTo alulate the transverse orrelation of the �eld, i.e. Γu(x, x′, z) = 〈u(x, z)u∗(x′, z)〉at distane z away from the soure, is neessary to take the ensemble average ofEq. (4.17) in the spatial domain. In ahieving this, let us set H(x,y) = G(x, z)G∗(y, z)and de�ne the ensemble average of vs as f = 〈v(x0)v(y0)〉〈s(x)s∗(y)〉, the ensemblesplits beause v and s are statistially independent. Thus the ensemble average
〈un(xn)u∗

n(yn)〉 using Eq. (4.17) is given by
Γu =

∫

· · ·
∫

f(x,y)H(x,y)dxdy (5.16)To be able to integrate Eq. (5.16) one would need to alulate the average f butthis is not neessary as long as f is a funtion of the di�erene x − y only. Thisis a onsequene of φ being a Gaussian and loally isotropi proess. Thus, usingEq. (5.13), f takes the form
f = 〈v(x0)v(y0)〉e−

PN
s=1 Dφ(xs−ys) (5.17)To ontinue the evaluation of integral Eq. (5.16) more notation is introdued toshorten the length of the equations. Let Λ−

s = 2(zs−1−zs)
k

and rs = (xs − xs−1)
2 −

(ys − ys−1)
2 be with obvious de�nition in vetorial form. Then Eq. (5.16) an be
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Γu = b

∫

· · ·
∫

f(x,y)
N
∏

s=1

{

exp [−i rs

Λ−
s
]

Λ−
s

}

dxdy (5.18)where b =
(

− 1
π

)N . A step further in alulating the above integral follows bymaking the following hange of variables: 2x = p + q, 2y = q − p, therefore
rs = (ps − ps−1)(qs − qs−1) or rs = p−s q−s . Thus, Γu in the new oordinate system is

Γu = b

∫

· · ·
∫

f(p,q)
N
∏

s=1







exp [−ip−s q−s
Λ−

s
]

Λ−
s







dpdq (5.19)Now, using that, Eq. (5.17) depends only on the di�erene of its oordinates, fwould be a funtion of p only, and so it is possible to integrate with respet to q.Reognising, that the funtion to be integrated in Eq. (5.19) is the Fourier transformof the identity thus resulting in a produt of delta funtions. But �rst, let us expressthe term appearing inside the exponential funtion as
−i

p−s q−s
Λ−

s

= i
∑

s

[

p−s
Λ−

s

− p−s+1

Λ−
s+1

] (5.20)with p−1 = p−n+1 = 0, sine we have added extra terms for onveniene. After insertingEq. (5.20) in Eq. (5.19)and performing integration with respet to q, exept for thesingle variable q0, we have
Γu =

∫

f(p, q0)

N
∏

s=1

Λ−
s δ

(

p−s −
Λ−

s p−s+1

Λ−
s+1

) N
∏

s=2

1

Λ−
s

dpdq0 (5.21)where δ is the Dira funtion delta. In the above expression N is an even integerotherwise one would have to multiply the term on the right by (−1)N .Finally, integration an be ompleted by noting that if Λ−
s = Λ−

s+1 for all s, i.e.all sreens are alloated at equal distane in spae then we have
f( ~pN , q0)

N
∏

s=2

Λ−
s =

∫

f(p, q0)
N
∏

s=1

Λ−
s δ

(

p−s −
Λ−

s p−s+1

Λ−
s+1

)

dp (5.22)



Propagation of orrelation funtion 104Here, ~pN = (pN , ..., pN). The �nal expression for Γu is obtained by insertingEq. (5.17) and Eq. (5.22) into Eq. (5.21), in doing so
Γu = e−NDφ(pN )

∫

〈v(
pN + q0

2
)v∗(

pN − q0

2
)〉dq0

= e−NDφ(pN )Γv(pN) (5.23)where Dφ is given in Eq. (5.9) by hanging to the new variable pN = τ . The abovealulations show that the energy funtion at distane L is equivalent to the produtof individual energy funtions at the exit of eah layer. Letting N tend to ∞ Γuapproximates to a ontinuous solution of seond order moment of the Helmholtz'sequation. An approximate solution for the seond order moment of Eq. (3.11) isgiven in [70℄ and losely oinides with Γu. An expression for the orrelation funtionof the baksattering �eld is also given in that paper. An example of the energyorrelation over a distane orresponding to several grains, as alulated aordingto Eq. (5.23), is illustrated in Fig. (5.3). The deay and width as it propagates isdetermined by σ and l, respetively. As a reminder, σ is the standard deviation ofthe proess µ haraterising mirostruture and l is orrelation length proportionalto grain size in polyrystalline materials.The extreme ase, i.e. for a highly aberrated medium, that is, σ → 1 and small
l -small grains- then the funtion Eq. (5.23) deays rapidly having a narrow tail.The ideal ase ours when µ = 0, that is a homogeneous medium, Γu so does nothange with the propagation distane.The hart shows a series of images of the orrelation funtion for di�erent valuesof σ and l. From the hart one an observe the behaviour of this funtion as theparameters are varied. The very �rst row shows the orrelation of the �eld in ahomogeneous medium. The row on the bottom line shows the behaviour of Γu forlarger values, that is σ → 1 and l → ∞ whih represent a medium with stronganisotropy and large mean grain size.
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Propagation of orrelation funtion 1065.2 Using a derived di�erential equationThe alulation of the seond order moment of the �eld in a random medium is notstraightforward as the last setion has shown. Even for the ase of single sattering.Many authors had dealt with seond order moments, [70, 59, 49, 40, 98, 97, 24, 60℄,of solutions of the stohasti wave equations with appliations to di�erent areas,suh as optis, and aoustis as well as elastiity. Some have given approximatesolutions under the assumption that the random proess haraterising the mediumis delta orrelated in the diretion of propagation, or the Markov approximation asit is also known. In referenes [47, 46℄, an equation for the seond order moment isobtained and its solution is shown under the Markov approximation. It was foundthat this solution is basially the seond moment previously obtained in (5.1.4),using the spetral representation of the �eld.5.2.1 Equation for the seond momentThe equation derived in [47, 46℄, is presented with the aim of giving an alternativeapproximation to Γ(x, x′, z) already given in the previous setion.Following the development in [47, 46℄, although it is easy to derive from Eq. (3.11)in its paraxial version, the equation for Z(x, x′, z) = u(x, z)ū(x′, z) is given by
2ik∂zZ + [∆x −∆x′]Z + k2[µ(x, z)− µ(x′, z)]Z = 0 (5.24)Note that the ensemble average has not been taken yet, whih means that theequation for seond moment is far from omplete. In order to �nd an equation for

〈Z〉 the average of the third term in Eq. (5.24) has to be alulated. But this isdi�ult, without assuming that µ is delta orrelated, that is, its orrelation satis�es
〈µ(x, z)µ(x′, z′)〉 = δ(z− z′)f(x− x′), f an arbitrary funtion and δ the Dira deltafuntion. Using this ondition, and the assumption about the inident �eld, whihis that its orrelation funtion depends only on its di�erene, it is possible to de�nea random proess that satis�es Eq. (5.24) after taking the mean.
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Zγ(x, x′, z, ξ) = Z0(x, x′, γ) e

ik
4

g(r,ξ) (5.25)be where g(x, x′, z, ξ) =
∫ z

0
[µ(x, z′, ξ)−µ(x′, z′ξ)]dz′ and Z0 = v(x, γ)v̄(x′, γ). Sine

v is �xed it is obvious that g must meet ertain onditions so Zγ(x, x′, z, ξ) is asolution of Eq. (5.22) for all ξ. One ould try to �nd those onditions but sine theimportant quantity here is the mean over an ensemble, that will not be neessary.The initial ondition at z = 0 is indiated with the produt of the inident randomproesses v(·, γ) and its onjugate. The γ is aimed to indiate that v belongs to adi�erent ensemble whih implies that Zγ(·, ξ) has to be averaged twie. This doesnot represent a problem sine the proess v and µ are statistially independent.Taking the average in Eq. (5.24) results in
2ik∂z 〈Zγ〉+ [∆x −∆x′] 〈Zγ〉+ k2 〈[µ(x, z, ξ)− µ(x′, z, ξ)]Zγ〉 = 0 (5.26)One still has to �nd a random proess that satis�es Eq. (5.26) and there is no wayto prove that proess Eq. (5.25) satis�es Eq. (5.26). Obviously

2ik∂z 〈Zγ〉+ k2 〈[µ(x, z, ξ)− µ(x′, z, ξ)]Zγ〉 = 0 (5.27)is satis�ed for the proess of the form Eq. (5.25)). Therefore, the solution toEq. (5.26)) redues to �nding proesses of the form Eq. (5.25)) that satisfy theondition
[∆x −∆x′ ] 〈Zγ〉 = 0 (5.28)The realisations of the proess Zγ are de�ned by the realisations of the proess µ.This means that the mean 〈Zγ〉 is ompletely determined by the statistial propertiesof µ. In priniple, all proesses satisfying Eq. (5.28) would solve Eq. (5.26) but thederivation here is in more elementary terms. One of the assumptions is that µ is a



Propagation of orrelation funtion 108Gaussian proess, besides being transversally isotropi, and almost delta orrelatedin the diretion of propagation, thus the mean 〈Zγ〉 is a funtion of the mean 〈g2〉.Let us �rst average Zγ with respet to ensemble γ, that is, using the sameletter to average the initial ondition one has Z0(x− x′) = 〈v(x, γ)v̄(x′, γ)〉γ . Henethe average 〈Z〉 over the ensemble is equivalent to obtaining 〈

e
ik
2

g(x,x′,z)
〉, whih issomething that an be ahieved if g is a Gaussian proess.The proess g(x, x′, z, ξ) is Gaussian sine µ is a Gaussian proess. It is wellknown that for any Gaussian proess g

〈

e
ik
2

g(x,x′,z)
〉

= e−
k2

8 〈g2〉 (5.29)so it remains to alulate 〈g2〉. Now, the mean 〈g2〉 is in fat the struture funtion
Dφ already introdued in setion (5.1.2) for Gaussian statistis. After inserting Z0and 〈g2〉 into Eq. (5.29) the ensemble average 〈Z(x, x′, z, ξ)〉 of Eq. (5.25) is

〈Z(x, x′, z, ξ)〉 = Z0e
√

πk2

4
lz[Γµ(0)−Γµ(x−x′)] (5.30)Now, expression on the right hand side of Eq. (5.30) is a funtion of the di�erene

x − x′ so is Γ = 〈Z(x, x′, z, ξ)〉 . It is now straightforward to hek that Eq. (5.28)holds true by substituting Eq. (5.30) in Eq. (5.28). Therefore, proesses Z(x, x′, z)of the form Eq. (5.25) satisfy equation Eq. (5.26).In this setion a random proess has been derived suh that its 2−point orre-lation satis�es Eq. (5.26) and this oinides with Eq. (5.23) previously developed insetion (5.1.4) using a di�erent method.5.3 Conluding remarksThe alulation of the average orrelation funtion of the �eld has been given �rstby the phase sreen method and derived from a di�erential equation in a separatesetion. The integral representation given in hapter (4), Eq. (4.17) was used to ap-proximate the average orrelation funtion, by diretly alulating the ross average



Propagation of orrelation funtion 109of the �eld. The paraxial assumption allowed us to integrate the resulting multipleintegral. The average of the multiple phase sreen in the integrand of Eq. (5.16)ould have been alulated beause of the Gaussian assumption on the proess µ,that follows from a standard result for multivariate Gaussian proesses. It is possiblethat in the future these onditions ould be removed so as to inlude proesses withmore general harateristis, thus representing other types of polyrystals.The resulting orrelation depends on the number of sreens used to approximatethe �eld, thus giving a disrete approximation of the orrelation. The setion wherewe have derived the orrelation from an di�erential equation was intended in a wayto alleviate this limitation. The resulting orrelations are essentially the same ifone uses an exponential funtion for the proess µ. It has to be observed that thesame result is obtained if one assumes from the beginning that u is statistiallyindependent, under whih ondition the operator [∆x −∆y] is eliminated from theequation. At any rate, any of the Eq. (5.23) or Eq. (5.30) an be used for theoretialpurposes as will be seen in hapter (6).



Chapter 6
Experimental methods and results
IntrodutionIn the previous hapters a theoretial model for SAWs in polyrystals was devel-oped. The aim was to derive a orrelation funtion for the �eld whih relates thestatistial properties of the medium to the statistial properties of the �eld. Thisorrelation was the transverse orrelation of the �eld and was dependent on the de-gree of inhomogeneity and the orrelation length of the medium. In this hapter thisis investigated experimentally by imaging the deviation of an plane aousti wave onthe surfae of the polyrystal. Aluminium and titanium were used as media beausethey have relevane to industrial measurements and exhibit well de�ned properties.In order to measure the orrelation funtion, whih is stohasti , it is neessaryto measure an ensemble of independent samples of the medium. So multiple mea-surements were arried out on the surfae of the samples to get an experimentalensemble of the aousti �eld. A proedure based on the estimator of the mean or-relation for a �nite sequene is given to study the aoustial ensemble statistially.From this analysis a transverse orrelation funtion an be measured for eah samplewith the aim of omparing it to the theoretial orrelation to obtain the degree ofinhomogeneity and the mean grain size of the samples. Material harateristis, suhas mean grain size, are obtained by numerially solving a nonlinear �tting problemfor the measured and theoretial orrelation funtion.



Experimental methods and results 111The instrumentation is brie�y introdued desribing the main harateristis ofthe OSAM system on whih the experiments were arried out. Part of the experimen-tal work was the seletion and preparation of the samples and their metallographiharaterisation. This is explained in detail as is their haraterisation by the diretmeasures of the grain size from photomirographs.The results omparing the theoretial and measured orrelation funtion of theultrasoni ensemble are presented at the end of this hapter together with someonlusions.6.1 Sample seletionTwo di�erent metals were seleted, aluminium and titanium. Aluminium was se-leted beause is extensively studied in the literature, both ultrasonially as well asmehanially. The other reason was beause of the well understood tehnique to pro-due samples with di�erent grain sizes and a ertain degree of spatial randomness ofthe grains. Aluminium naturally shows grain struture as shown in Fig. (6.1). Thephotomirograph, learly shows huge elongated grains and the regions have ertaindegree of spatial orientation. From theoretial and experimental points of view thesetypes of samples were not of interest for the present researh, mainly beause of theelongated grain shape, whih is extremely di�ult to model. The mirostruture ofaluminium in Fig. (6.1) an be modi�ed by adding a re�ner. Using the re�ner thegrains tend to beome mainly onvex, and spatially distributed at random.Titanium metal was seleted mainly beause of inreasing interest in determiningits properties non-destrutively in industry. The titanium sample, widely used inaeroplane, engines was provided by Rolls Roye.6.2 Sample preparationThree di�erent aluminium samples were reated, A, B and C, eah with a di�erentmean grain size, and one blok of titanium. The grain size distribution in aluminium
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Figure 6.1: Photomirograph showing individual elongated grains in an aluminiumsample. The photomirograph was obtained in a onventional mirosope underross-polarised light.was seleted by varying the onentration of the re�ner. The proedure is similarfor all of them so only a detailed desription for one sample is desribed here.6.2.1 Proedure for re�ning grains in AlAn Al (99.9%) harge of 500gr, ontained in a lay bonded SiC ruible, was heatedto 730◦C in a mu�e furnae. After melting the Al harge and in order to obtaina lightly re�ned Al ingot, 0.2wt.% of an Al-titanium-B ommerial grain re�nerwas added and dissolved into the melt. Prior to removal of the oxide skin from thesurfae of the molten metal, the melt was ast into a retangular steel mold in whihit was allowed to solidify naturally. The Al ingot was released from the mold andsetioned with a band saw. Due to the geometry of the steel mold, a oarse olumnargrain struture is expeted in the top part of the Al ingot. For this reason, thatsetion was removed and four useful bloks were obtained. Owing to the symmetryof the ingot, only three bloks were used; one for the ounter part for metallographiharaterisation and the third was subjeted to maro ething to reveal the overallgrain struture. The maro ething is simply the immersion of the sample in a



Experimental methods and results 113solution to reveal the mirostruture and to be able to observe it with the nakedeye. Samples for metallography were taken from one blok and were mounted,ground and polished down to 1µm following standard polishing proedures. Thesame preparation was given to the ounter fae of the other blok. To reveal thegrain struture, the Al blok was repeatedly immersed into a solution (38% H2O,45%HCl, 15% HNO3 and 2%HF) and washed until a good ontrast was ahieved.Also, the Al polished samples were anodised in a 2% solution of KBF4 in water for 1min at 25V [31℄. After washing and drying, the samples were viewed and imaged inan optial mirosope, equipped with a digital amera, under ross-polarised light.The idea with this tehnique was to reate samples with di�erent grain sizes,mainly onvex grains and spatial random distributions [31℄, by re�ning the grainsize by adding small quantities of the re�ner, Al-Ti-B, to the aluminium. This teh-nique did work well for high onentrations of Al-Ti-B in the mixture whih hasprodued samples, identi�ed as MB, MC below, with the required harateristis.The tehnique is probably not suitable for produing samples with those harater-istis and grain mean sizes bigger than 1000µm, as it was the ase for the other twosamples.Finally, the samples were polished to a mirror-like �nish for ultrasoni inspetionusing standard tehniques.Ti preparationOne single blok of titanium was prepared for ultrasoni inspetion. The metalblok was polished to a mirror-like �nish for inspetion. Immediately after theultrasoni experimentation was omplete a small piee of the orner, 1m×1min size, of the sample was ut-o� for metallographi haraterisation. This smallsetion was ethed with the purpose of revealing the mirostruture, but most of thestandard tehniques did not reveal learly the mirostruture as with the aluminiumsamples. Nevertheles, a photomirograph is presented in setion (6.3.1) where it anbe appreiated that the mirostruture of the Ti sample is ompliated.



Experimental methods and results 1146.3 Metallographi haraterisationCharaterisation of a metal, in partiular Al, means more than just measuring thegrain size of the mirostruture. Other properties inherent to metals like mehanial,optial or physial harateristis, to mention just a few, are beyond the sope ofthis work. However, the optial properties of the surfae of the sample are importantsine this tehnique requires samples with well polished surfaes for laser ultrasonianalysis. The metallographi analysis or haraterisation of samples means, in thisontext, the estimation of the grain size distribution expressed in terms of a meangrain size and a standard deviation. The unit hosen for these quantities was themirometre.The haraterisation of the aluminium is presented �rst, followed by the titaniumsample.6.3.1 Digital haraterisationThe grain size distribution was measured diretly from a digital image for eah blok.The image orresponding to blok A will be referred as MA, MB for blok B and soon.Using open soure software1 the perimeter was measured for eah region on-tained within eah mirograph and stored in a �le for mean estimation. The meanalliper diameter, as de�ned by Eq. (3.20), was obtained by dividing the mean di-ameter of eah region [34℄ by π.Charaterisation of blok AFor blok A, MA is not a single image but several pitures stithed together. Thisproedure was neessary due to the optial limitation of the mirosope used at thetime of imaging the samples. The image in Fig. (6.2) does not ontain a su�ientnumber of grains for statistial estimation. A sensible number in the population ofthe grains would be at least �fty.1ImageJ http://rsb.info.nih.gov/ij/



Experimental methods and results 115To minimise the error, software was used to identify similar points of adjaentimages and it was possible to stith them together. In this way an image ontainingmore that enough regions for metallographi haraterisation was reated. The im-PSfrag replaements
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Figure 6.2: A histogram of the grain size distribution for MA is showed on the lefthand side, where σA is the standard deviation of the grain size distribution. To theright hand side, the photomirograph of the aluminium sample is shown, under-rosspolarised.age MA orresponding to blok A has a more ompliated mirostruture omparedto MB , MC , in that it ontains non-onvex regions. The other problem was that theontrast in some regions of the ethed surfae was very poor, so quite a few grainswere merged into one. Additionally, some of the grains were ompletely embeddedwithin larger grains, in whih only the big ones are ounted. This feature madeharaterisation di�ult.The ompliation with grain haraterisation an be seen in Fig. (6.2), where thedistribution does not uniformly aumulate around a entral value. Nevertheless,the results were approximately ¯̄bA ≈ 1345µm for the mean grain size, standarddeviation σA = 718, and the number of grain onsidered was NA = 54. The meanalliper diameter number was roughly heked with a di�erent method by measuringthe number of visible grains within an square and dividing the area of the square



Experimental methods and results 116by number of grains, results were omparable with both tehniques.Charaterisation of blok BFor the seond piee a similar proedure was applied as desribed in previous para-graphs, but the number of regions present in one image was far greater than in MAin Fig. (6.3). The di�erene with MB is that it has a homogeneous distribution ofmainly onvex grains. In the sense that the size distribution is more evenly dis-tributed, unlike A, making the estimation of the length of the boundary for eahregion easier. Stritly speaking, neither MA nor MB have mirostruture ompletelypopulated with onvex regions. To make haraterisation easier, grains whih aremainly onave are being thought as onvex when estimating the mean alliper di-ameter. On average grains mainly onvex outnumber grains mainly onave foraluminium sample MB. Fig. (6.3) shows the results of measuring grain size distribu-PSfrag replaements
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Figure 6.3: A histogram of the grain size distribution for MB showed on the lefthand side, where σB is the standard deviation of the grain size distribution. Toright hand side, the photomirograph of aluminium sample is shown, under-rosspolarised.tion for eah region by measuring their perimeters. The mean alliper diameter wasobtained under similar onditions from equation Eq. (3.20) with an approximate



Experimental methods and results 117value of ¯̄bB ≈ 785µm. The numerial values for the standard deviation σB and thenumber of regions NB onsidered in this ase are also shown in Fig. (6.3).Charaterisation of blok CA third sample aluminium MC was haraterised with enouraging results. Thissample has the smallest grain sizes ompared to the other two so one ould see highnumber of grains in a single image. It was not neessary to take several images andstith them together. The interesting feature of this sample is the evenly distributedgrain on�guration. The frequeny of grains of size of approximate mean valuePSfrag replaements
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Figure 6.4: A histogram of the grain size distribution for MC showed to the left handside, where σC is the standard deviation of the grain size distribution. To right handside, is the photomirograph of the aluminium sample showing, under-ross polarisedlight the grain for blok MB.
¯̄bC ≈ 134µm is high, making a good distribution as shown in the histogram in�gure Fig. (6.4). The high ontrast between regions in this sample made perimetermeasurement easier, onsiderably reduing the error.



Experimental methods and results 118Charaterisation of TiThe haraterisation of this sample was di�ult. At the beginning it was thoughtit was titanium but most of the standard tehniques for ething titanium to revealthe mirostruture did not show the expeted result, so an alloy must have beenpresent. Below, in �gure Fig. (6.5), is shown the photomirograph of a setion oftitanium sample ethed to reveal the mirostruture. It was obtained in a standardmirosope equipped with a digital amera after ething the surfae of the metalwith standard tehniques. There are ertain regions that ould orrespond to grains

Figure 6.5: Photomirograph of the surfae of titanium ethed by standards proe-dures to reveal the mirostruture.but it is di�ult to onlude that they atually orrespond to grains. Therefore, theestimation of the mean grain size was not possible for this partiular sample. Theompliated mirostruture made the disussion about the observed aberrations inthis sample di�ult as well.6.3.2 Error in haraterisationThe perimeter was measured by using graphial interpretation using the open souresoftware as before. A soure of error is then how aurately a normal human being



Experimental methods and results 119an measure the perimeters of regions omposed entirely of pixels with the aid of aomputer mouse. The other possible soure of error is in the proedure of takingseveral digital pitures by mehanially moving the sample to a di�erent position,with the possibility of the mirosope being out of fous.A more quantitative error is given in terms of the standard deviation and thenumber of regions onsidered for eah blok, i.e. Es = σs/
√

Ns where s = A, B, C,showed in Fig. (6.2), Fig. (6.3) and Fig. (6.4). This is the standard error [99℄,whih measures the di�erene between the estimated and the true values for thediameter of the grains. The units of the standard deviation σs are the units usedfor estimating the mean size distribution, therefore the units of Es. The mean graindistribution was estimated in mirometres.6.4 Experimental setupOver the past few years an Optial Sanning Aousti Mirosope (OSAM) hasbeen developed [89℄. This highly �exible instrument an be fully automated and isapable of performing multiple aousti measurements over the surfae of a sample.Advantages has been taken of these apabilities to build up an ensemble of theaousti �eld over the surfae of aberrating materials.6.4.1 SAW generation systemsTwo di�erent type of devies were used for SAW generation in the experimentalwork. The �rst one is a spatial light modulator (SLM) being part of the OSAMsystem, whih is brie�y presented below, and a 10MHz transduer, whih replaedthe SLM as soure of SAWs for the titanium sample.The OSAM systemThe main omponents of the OSAM are shown in Fig. (6.6). It uses a Q-swithedmode loked Nd-YAG laser for SAW generation, by using a spatial light modulator



Experimental methods and results 120(SLM) to image any desirable pattern�typially a set of ars or straight lines�onto the surfae of the material under investigation. This image, illuminated by thepulsed laser, ats as the soure of the surfae waves. The fundamental frequeny atwhih the OSAM generates ultrasound is 82MHz, but multiples of that frequenyan be also generated.
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Photo−detectionFigure 6.6: A pattern generated by a spatial light modulator is imaged onto thesample using a pulsed laser. This pattern ats as the soure of the surfae aoustiwaves. The waves are deteted by another laser, using an optial beam de�etiontehnique [19℄.SAW generation using a transduerThe ultrasoni inspetion of titanium was performed by generating SAWs using astandard 10MHz transduer. In this experiment, the SLM was replaed by thetransduer as the soure to generate SAWs on titanium as shown in Fig. (6.7). Thesame probe and apabilities of the OSAM were used, so it uses the mehanialand optial setup of OSAM system to detet SAWs in titanium. Two things weretaken into onsideration for hanging devies for SAW generation. Firstly, and mostimportant, is that it was not possible to launh a SAW in titanium at 82MHz, whihis the fundamental frequeny of the OSAM and atively uses the SLM to ahieveit. Seondly, the idea was to have a broadband soure to test the mirostruture oftitanium at di�erent sales relative to the wavelength. The transduer was a 10MHz
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yFigure 6.7: Sample and transduer array for SAW generation. The probe and thewhole detetion system in this experimental setup orrespond to the OSAM system.[Panametris, A544S-SM℄, so one an take the amplitude and phase measurementabove and below this frequeny to see how it interats with the grain struture ofthe material. The bandwidth of the transduer allowed one to measure frequenies
±2MHz from the entre frequeny. The frequeny of the transduer was seletedsimply on the basis that the transduer was readily available, although it would havebeen interesting to experiment with other frequenies; unfortunately there was notime for more experiments.6.4.2 Detetion systemA ontinuous wave laser is used to detet the propagating surfae waves using anoptial beam de�etion tehnique. Both the detetion system and the sample aremounted on omputer-ontrolled automated stages, and so the OSAM is apable ofrapidly imaging, due to the analogue data apture system, the propagating wavefrontat any position on the sample. A omprehensive overview and tehnial details aregiven in [89℄.A omplete set of software and eletronis has been developed for gatheringinformation at high speed. Typially, an amplitude and phase -san over an areaof 1.5m×1.5m with a resolution of 10µm an be taken within a matter of minutes.



Experimental methods and results 1226.5 MeasurementsThe ultrasoni investigations on aluminium and titanium samples are presented inthis setion as a fundamental part of the experimental work. In order to measurethe mean orrelation funtion, it is neessary to have multiple independent measure-ments of the aousti �eld aross the ensemble of the sample. Fig. (6.8) shows theshematis of the multiple loation on the surfae of the sample where multiple mea-surements were performed. It is important to highlight here that the proedure isfully automated so it was only neessary to reate a single sript in order to performall the measurements. The materials tested were aluminium bloks, labelled MA,
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Figure 6.8: Shemati representation of sanning area and soure loations to builtup an ultrasoni ensemble. At eah position of the SLM, marked with a series ofblak and white stripes, a -san was performed aross x and z diretion. Thediretion of propagation is along the z axis.
MB and MC already introdued and titanium. The measured �elds are labelled ateah loation by uA

n where A indiates the blok it belongs to, in this ase to blok
A, n is the number of -sans performed in that partiular blok.The dimensions of eah metal blok were approximately 6m×4m×1m, whihgives su�ient room for multiple measurements sine the sanning area is typially3mm×10mm. This area was hosen so the size of the SLM or equivalently the widthof the soure as well as the spread of the ultrasoni beam was entirely sanned asthe SAW propagates in the material. The length of 10mm along the propagationdistane was also arefully hosen so to be able to detet SAWs until the aousti



Experimental methods and results 123�eld beame undetetable or the knife-edge was deteting only noisy signals.The images are presented separately sine the grain size distributions are di�er-ent for eah blok to give di�erent aberration patterns. In all ases, the SLM wasprogrammed to projet a series of straight lines onto the surfae of the sample, eahline separated from its nearest neighbour by a distane equal to the mean Rayleighwavelength in aluminium. The waves are generated at 82MHz, whih is the funda-mental frequeny of the exitation laser in the OSAM system, whih orresponds toa line spaing of approximately 37µm in this material. For the titanium sample a
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Figure 6.9: (a) Area in xz plane whih -san has been performed. (b) The blaksquare represents the multiple positions where the transduer has been loated toperform a -san aording diagram (b); whereas arrows indiate the diretion ofpropagation.similar proedure was arried in order to obtain multiple measurements. The onlydi�erene was in the areas hosen within whih to perform the sanning. This wasmainly beause the transduer ould only physially be �tted to the edge of thesample. The situation of the sanning areas hosen for this partiular experimentis shematially represented in Fig. (6.9)(b). Fig. (6.9)(a) shows the soure and thearea to perform -san for eah blak square in Fig. (6.9)(b).The reloation of the soure was done manually by moving the transduer toa new loation and making sure the ontat medium was in good ondition at alltimes. The ontat medium was a water based ouplant that dries very quikly, sothe -san had to be done very quikly before the ouplant beame hard, hangingthe pattern. The e�et of dried ouplant ould not entirely be avoided, and this an



Experimental methods and results 124be notied in the measured �elds whih will be presented at the end of this setion.In both experiments, the loation of the soure is unimportant as long as theareas hosen do not overlap, and the deteted aousti �elds remain independent.This was to ensure that every SAW propagated in the samples travelled throughdi�erent samples of the ensemble of loal mirostrutures. The basi assumption isthat eah area hosen to perform the sanning represents an independent realisationof the mirostruture ensemble whih is equivalent to having many independentsamples with the same statistial properties.Case ABlok A has large grains ompared to mean Rayleigh wavelength, and so they have arelatively small e�et on the wave in the diretion of propagation. In this partiularase, the aousti �eld ould not be measured until it beame unorrelated beauseof mehanial limitations of the system. This an be seen in Fig. (6.10), wherethe signal at 6mm remains strong in some ases and so ould have propagated evenfurther. Thus the e�et of mirostruture on the aousti �eld ould only be partiallyobserved. Fig. (6.10) shows the amplitude and phase distributions of a plane wavetravelling from left to right on di�erent loations in sample A. The images show thedeviations aused by the mirostruture to the wavefront of the aousti wave. Thetransverse size of the �eld is determined by the size of the SLM. The propagationresembles an optial di�ration pattern through a slit sine the SLM has a �niteaperture. The e�ets of the orners of the SLM are not observed in this partiularexperiment.The images have a typial plane wave pattern propagating in a medium withinhomogeneities suh as polyrystals. The wavefront breaks up due to aberrationaused by the grain struture, leading to transverse variations in the amplitude. Thesame e�et an be observed in the phase distribution; the wavefront is not �at asone would expet in a homogeneous medium.One possible ause for the relatively small e�et in this experiment is that thegrain size is reahing the size of the SLM (≈ 2mm), so the beam behaves as it was
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Experimental methods and results 126propagating in a homogeneous medium.By omparing the di�erent amplitude images in Fig. (6.10), one an observe thatthey are di�erent from eah other. As the soure hanges loation, one is in fatmeasuring the aousti �eld in a di�erent realisation of the mirostruture ensemble.The soure position was hosen in suh way that the sans of adjaent areas werenot overlapping, see Fig. (6.8); thus the family {

uA
n

} for di�erent n is an ensembleof aousti �elds sine di�erent sanning areas orrespond to di�erent realisationsof the mirostruture.Case BUnder similar experimental irumstanes as with blok A, the sample B was inves-tigated. Blok A and B have similar dimensions, grain size being the only di�erenebetween them. The ensemble of aousti �elds was built up by moving the soure atdi�erent loations and performing a -san every time. Fig. (6.11), shows a numberof phase and amplitudes images, one again at di�erent loations on sample B. Themean wavelength is still smaller that the grain size distribution, but the grains aresmaller ompared to the previous ase. In this ase, it is expeted that there wouldbe a stronger interation between SAWs and grains ompared to the one observedpreviously with sample A. This an be observed as the amplitude deays faster andthe �eld beomes di�use at propagation distanes less than 6mm. By di�use wemean that the energy of the wave has spread transversally due to aberrations andthe aousti �eld beomes unorrelated in the sense that the transverse orrelationfuntion tends to a delta funtion. The phase hanges are slightly more di�ult toobserve here beause of the resolution limitations. A omparison an be made withFig. (1.1) in hapter (1), where the sanning was performed at higher resolution inboth diretions.Case CFinally, sample C was also ultrasonially investigated showing the amplitude andphase distributions of a number of realisations of the aousti ensemble in Fig. (6.12).
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Experimental methods and results 128As expeted, the wave beame di�use very quikly due to multiple interationswith the grains.Summary on the values obtained and used previouslyThe following table summarises the various values obtained and used in the wholeexperiment.Aluminium ¯̄b(µm) λ̄R(µm) n px × pz(µm× µm)

MA 1345± 98 35.5 54 5× 200
MB 785± 42 35.5 118 5×2000
MC 134± 5 35.5 56 5×100Table 6.1: Summary of some of the values used and obtained for mean aliperdiameter ¯̄b, mean Rayleigh wavelength λR, and the number if images n in aluminiumsamples at 82MHz. px, pz denotes pixel size in x and z, respetively.The low resolution hosen in the diretion of propagation (z−axis) in omparisonto the transverse axis is partly due to the relatively small variations of the orrelationfuntion �eld for short propagation distanes. So for instane, blok MB has aresolution of 2000µm giving as a result a total of eleven slies of the �eld alongthe axis of propagation. This is why aberrations annot visually be observed inFig. (6.11). The resolution on the rest of samples was inreased only for aesthetipurposes to show the variations of the wavefront. It is believed that a minimumof three slies along the propagation diretion would be su�ient to observe theoverall behaviour of the orrelation funtion. It was important to keep the transverseresolution high sine the width of the orrelation funtion will be an estimator ofthe mean grain size, whih is presented in setion (6.6). As regards the number

n of �elds measured, it is believed that n ≥ 50 would be a sensible number forobtaining an average orrelation funtion. The proedure for obtaining the averageorrelation is explained in detail in setion (6.6). To make sure this was the ase,
n was inreased to 118 for blok MB, making a small di�erene on average for theorrelation funtion. The other reason, perhaps less important, in keeping n around50 in bloks MB and MC was to speed up the proess of gathering data.
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Experimental methods and results 130The values for the mean wavelength are only approximations for aluminium.The OSAM system is wavelength tunable in order to generate ultrasound so a valueof 35.5µm for the Rayleigh wavelength, gave the maximum signal that ould beobserved using a standard osillosope for the normal displaement signal.6.5.1 Measurements in TiThis setion disusses the experiment arried out in the titanium sample; the pro-edure is similar to the one for the aluminium speimen already disussed. Theexperimental setup and SAW generation as well as the proedure for the experi-ment has been disussed in setion (6.4). The important point here is to observehow the amplitude breaks up with distane as well as the phase variations. Thepropagation is from left to right. As it an be observed the spekle patterns areslightly di�erent to eah other as the aousti �eld interats at di�erent frequenieswith the grains. The purpose of this experiment was to make the ultrasoni �eldinterat with di�erent grain sizes and to build an ensemble of the aousti �eld atmultiple frequenies. Therefore, for eah point r = (x, z) and �xed soure positiona time waveform, u(r, t), for the normal displaement was obtained. The waveform
u(r, t|γ) has been transformed to the frequeny domain using the Fourier transform,

u(r, ω|γ) =

∫

uy(r, t|γ)e−iωtdt (6.1)where γ represents a sample of the aousti ensemble aross a mirostrutural en-semble.The fundamental frequeny of the transduer is 10MHz so analysis of the speklepattern at that frequeny was expeted to provide the most aurate estimation ofthe material harateristis.In Fig. (6.13) there are some notieable deviations of the aousti �eld that arepossibly not to due to the interation of the aousti �eld with the mirostruture.These latter observations, by looking at images in Fig. (6.13), were partly due tothe observed mirostruture, shown in Fig. (6.5) after ething the titanium sample
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Experimental methods and results 132for haraterisation. To assess and to make sure that those deviations were ausedby the interation with the mirostruture an experiment in a homogenous isotropimedium was arried out. The �ndings are presented in the next setion for glass. Itwas found that the ouplant was partly responsible for the deviations.The aousti �eld in a homogeneous mediumThe purpose of this experiment was to assess the output of the transduer in anon-polyrystalline medium and experimentally assess the weak ontributions ofthe mirostruture to the aberrations aused in the aousti �eld. The resultantaousti �eld is shown in Fig. (6.14) below. Comparisons an be made with the
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Experimental methods and results 1336.6 Analysis of experimental data6.6.1 Proedure for spatial orrelationThe statistial analysis of aberrations was made on the basis of statistial oneptssuh as the seond order moment or energy orrelation funtion for �nite sequenes.Notation is introdued to explain some of onepts and be able to ompare themwith the theory earlier developed in previous setions of hapter (5).The measured aousti �eld in all the samples is being denoted by un
xz. Thus,

un
xz will represent any of the �elds shown in Fig. (6.10), Fig. (6.11), Fig. (6.12)and Fig. (6.13). The aousti �eld is a two dimensional san in the xz axis, so

x = 1, ..., K, where K is the number of measurements in the x diretion whereas
z = 1, ..., L being L the number of measurements in the z diretion. The numbers
K and L are determined by the resolution of the -san taken in both diretions.The index runs as n = 1, ..., N , where N is the number of -sans performed oneah sample.The aberrations are being quanti�ed by the transverse orrelation of the �eld.Hene, the transverse orrelation is alulated from the aousti ensemble at eahplane along the diretion of propagation.We de�ne the ross-orrelation as 〈un

xzu
n∗
x′z〉 where 〈−〉 denotes the ensembleaverage for �nite sequenes. The estimation of the ensemble average of Zn

xx′z=un
xzu

n∗
x′zis rather ompliated sine there is little statistial information about un

xz. Instead,two di�erent averages will be performed. By making τ = x − x′, Zn
xx′z an berewritten as Zn

x(x+τ)z=un
xzu

n∗
(x+τ)z. Sine there is a transverse waveform for eah τ ,the average over x is performed as well as the ensemble average, leading to
Zτz =

1

NK

N
∑

n=1

K
∑

x=1

Zn
x(x+τ)z (6.2)The average Z is an average transverse orrelation for eah measured realisationof the aousti �eld. The disrete funtion Z remains a omplex funtion so itsmodulus will be onsidered, and it will be termed orrelation or the energy orrela-



Experimental methods and results 134tion funtion. The average orrelation funtion is denoted by Γe where sub-index eindiates measurement, thus
Γe(τ, z) = ‖Zτz‖ (6.3)The average Eq. (6.2) is simply the arithmeti average of the disrete orrelation foreah realisation of the aousti ensemble measured on eah sample. As pointed outin setion (6.5), if N ≥ 50 Eq. (6.3) would give a good estimation for Γe.6.6.2 ResultsThe estimated orrelation funtion is presented in this setion. It has been numer-ially estimated using Eq. (6.3) for one instane of the aousti �eld. The mainproperties of this funtion are desribed in the next setion where it will be om-pared to Eq. (5.23). Only a single image of the orrelation funtion, in partiularfor aluminium, will be presented as they all look similar. A more detailed versionfor both aluminium and titanium will be desribed in setion (6.7).The orrelation Γe in a aluminium sample numerially implemented is shownin Fig. (6.15). The funtion has been normalised so the value of eah transverseorrelation at 0 along the propagation axis is 1. The important harateristis ofthis funtion will be the width of the entral tail whih will be related to the meangrain size. The seond most important harateristi of the orrelation funtionis that it deays away from the soure. This deay is also diretly related to thestrength of the aberration measured via the standard deviation that haraterises thedegree of inhomogeneity. The orrelation funtion at z = 0 has a wide base and tail(brightest areas in Fig. (6.15), near 0), but narrower away form the soure. The baseorresponds to the non-zero values of the orrelation funtion. The width of the baseis ompletely determined by the size of the soure, in the ase of aluminium, the sizeof the SLM. As the orrelation funtion propagates away from the soure, it deays sothe base disappears as an be seen in Fig. (6.15) at distane z = 8, for instane. Thereason for that to happen is beause the aousti �eld at those propagation distanes
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Figure 6.15: One single instane of measured orrelation funtion in aluminiumsample aording to Eq. (6.2). The width of this funtion is an estimator of themean grain size in polyrystals.is transversally unorrelated, thus giving as a result almost a delta orrelation.This transverse property of the �eld depends entirely on the mirostruture of thesample under investigation. Therefore, the orrelation funtion behaves di�erentlyon samples with di�erent mirostrutural properties. In theory, eah speimen wouldorrespond to a unique orrelation funtion, eah one being haraterised by twoparameters suh as orrelation length and degree of inhomogeneity. For instane,the orrelation funtion is expeted to have small variations both on the deay andwidth for aluminium sample MA ompared to MB and MC at equal propagationdistane away from the soure. This is beause MA has larger grains relative to thewavelength ompared to MB and MC . In the latter ase there is a greater number ofinterations between grains and the aousti �eld and so the �eld beomes rapidlyunorrelated.In order to have a global behaviour of the orrelation funtion in both diretions,transverse and in the diretion of propagation, the �eld was observed until it beamevanishingly unorrelated or di�use, that it is Γe → 0. These properties are disussedin the next setions, whih is dediated to orrelation of the aousti �eld and itsrelation to the theoretial ounterpart.



Experimental methods and results 1366.7 ComparisonThis setion presents the main results onerning the measured orrelation funtionon aluminium and titanium samples. The statistial analysis of the aousti �eldsmeasured on eah sample was performed aording to analysis desribed in setion(6.6.1), whih ulminates in the estimation of an average orrelation funtion for eahsample. So, the main result is the omparison between theory and the measuredorrelation funtion. The averaged measured orrelation funtion for eah ase, thatis for A, B, C and the titanium sample, was estimated from Eq. (6.2) in all ases foromparison to Eq. (5.21). From this omparison, two parameters haraterising theoverall behaviour of the orrelation funtion are estimated. These, as it will be seen,orrespond to the degree of inhomogeneity and the mean grain size. To ontinuewith the same order as in previous setions the results for aluminium are presented�rst.6.7.1 Comparison for AlThe experimental data aquired by the OSAM instrument were proessed in the waydesribed in setion (6.6.1) whih disussed orrelation for �nite sequenes, and om-parisons are made between the measured Γe and predited Γu in Eq. (5.21); these arethe energy orrelation funtions at various propagation distanes. Fig. (6.16) showsthe omparison of the measured Γe and predited Γu energy orrelation funtions�where Γu is shown as solid lines�for samples A, B and C. In eah ase, it is shownat three di�erent propagation distanes, in order to illustrate the deay of the or-relation funtion with distane.The dashed lines in Fig. (6.16) represent the measured energy orrelation fun-tion on the samples at the same propagation distanes, derived from the aoustiensemble in samples A, B and C. There is good agreement for samples B and C.There are two parameters whih are free in Eq. (5.23), being σ and l. These
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Experimental methods and results 138have been obtained by �tting Γe to Γu by minimising the following funtion
χ2(σ, l) =

∑

xk,zl

[Γe − Γu]
2 (6.4)The values obtained for σ and l from Eq. (6.4) were obtained by nonlinear minimi-sation of the square di�erene between the experimental and predited orrelationfuntion. The above non-linear �tting problem is numerially implemented else-where. The standard deviation whih measures the veloity variations from grainto grain, Eq. (3.19), used in Fig. (6.16) for omparison; average this σ ≈ 0.015,whih is a value that one would expet for aluminium [23℄. For omparison between

Γu and Γe in Fig. (6.16), the values for the orrelation length l were taken as themean grain size from the haraterisation of the speimens in setion (6.3). This isto illustrate that the theoretial orrelation Γu, is indeed reproduing the measuredorrelation funtion using real values.The estimated values σ and l from Γe obtained by minimising Eq. (6.4) are shownin table (6.2). It should be remembered that the standard deviation σ, and the
MA MB MC

σ 0.010± 0.002 0.014± 0.003 0.021± 0.004
l 686± 137 678± 136 165± 33Table 6.2: Experimental values for σ, l obtained by minimising Eq. (6.4) for thealuminium samples A, B, C. The spread in both quantities σ, l indiates that theyare to be found within a 20% auray.orrelation length l in table (6.2), have no relationship with the standard deviationand mean alliper diameter ¯̄b in Fig. (6.2), Fig. (6.3) and Fig. (6.4). It would bedesirable, however, that l and ¯̄b have the same value, so the orrelation length is agood estimation of the mean grain size. The de�nition and physial meaning of σor degree of inhomogeneity has been given in detail in setion (3.3.2). The spreadin both quantities, σ and l in table (6.2) indiates that they are to be found withina 20% auray aording to analysis presented in setion (6.8) for the best �tting.The estimation of σ is reasonable in all ases, ompared to the value reported in[23℄, however, the estimated orrelation length for sample A is signi�antly di�erent



Experimental methods and results 139from the values obtained visually, whih are approximately 1345µm, 785µm and134µm, as shown in Fig. (6.10), Fig. (6.11) and Fig. (6.12), respetively.Possible reasons for this are as follows. Firstly, due to mehanial limitations inthe OSAM instrument, the aousti �eld on sample A ould not be mapped in itsentirety. This e�etively trunated the available dataset from whih an estimationould be made. Seondly, we note that the measured mean grain size (1345µm), isapproahing the width of the aousti soure (≈ 2mm). This is signi�ant, beause
Γe is in�uened more by the aousti aperture in this ase than by the orrela-tion length. Finally, as noted in setion (6.3.1), the large grains in sample A haveompliated form in that many of the grains are non-onvex.6.7.2 Comparison for TiThe analysis of the ensemble aousti �eld was idential to that of aluminium, inthe sense that the energy orrelation funtion was obtained using the same method.The results for some representative frequenies are presented in table (6.3) belowFig. (6.17) shows a omparison of the predited and measured power orrelation

f(MHz) 8 9 10 11 12 13
σ 0.024 0.025 0.028 0.028 0.026 0.027 ±0.15σ

l(µm) 351 399 368 428 424 424 ±0.15lTable 6.3: Parameter values used for omparison of the predited and measuredorrelation funtion.funtion with values aording to table (6.3). The weak aberrations observed insetion (6.5.1) is re�eted in the energy orrelation where the deay is slow alongthe propagation distane, Fig. (6.17). It should be expeted, at least theoretiallyin highly aberrated materials, that the energy orrelation deays and gets narrowas it propagates. It an be said that the aousti �eld is interating with grains.Otherwise, the propagation will imitate propagation in homogeneous materials.The parameter l haraterises material mirostruture but the metallographistudy of the sample tested did not learly reveal the grain boundaries so the valuesin table (6.3) ould not be satisfatorily validated using standard tehniques. This
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Experimental methods and results 141ompares to the results for aluminium where the parameters are in satisfatoryagreement with the atual measured mirostruture.6.8 Analysis of the best �tting proedureThe values for σ and l were obtained numerially by minimising χ2 in Eq. (6.4).This setion disusses the range over whih values obtained an be onsidered tobe the best. The analysis has been done for the results shown in Fig. (6.16) foraluminium, in partiular for the sample C. This sample was hosen arbitrarily asthe others show similar behaviour.Let us de�ne the following funtion
r(σ, l) =

√

1− χ2

s2
(6.5)where s2 =

∑

x,z f 2
xz, fxz = uC

xz and uC
xz is the �eld shown in Fig. (6.12). The funtion

r depends on σ and l. Let us also denote the best values for the standard deviationand orrelation length by σb and lb, respetively. These values will orrespond tothe values used in graph Fig. (6.16). The orrelation r is alulated when a pair ofvalues σ, l best �t and r(σb, lb) is expeted to be very lose to 1. The plot on theright in Fig. (6.18) shows that for values smaller and larger than σb the funtion r isfar less than 1. A similar situation is shown on the left plot in the same �gure. Thefuntion r is smaller than 1 for values smaller and larger than the best. In summary,the best values that minimise χ2 an be found within 20% of the best values σb and
lb used in Fig. (6.16) for omparison.The estimation of the parameters is a�eted by the noise generated by the systemand is re�eted in the orrelation funtion. The additive noise goes away when theorrelation funtion is estimated but the noise remains a�eting mainly the widthof the orrelation funtion whih is proportional to the mean grain size.
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σ, l. The data was �ltered assuming a linear model [100℄ of the form y1 = y2+e where
e is white noise statistially unorrelated to y1, and y2 is data free of noise. When�ltered with an optimum �lter the residual is delta orrelated, whih orresponds to



Experimental methods and results 143noise. This an be removed by a �lter based on wavelets with the retention of thedesired signal. This very simple model onsiderably redues the entral peak due tonoise.The following table summarises the values obtained by minimising χ2 using rawdata without a �lter. From table (6.4), it an be onluded that the most a�eted is
MA MB MC

σ 0.011± 0.002 0.021± 0.004 0.029± 0.006
l 404± 81 176± 35 112± 22Table 6.4: Parameter estimated by minimising χ2 without �ltering the datathe orrelation length for blok B as the standard deviation remains onstant withinertain limits, ompared the values for σ and l in table (6.2). Thus, in order toestimate parameters with aeptable auray it is neessary to gather data almostfree of noise or apply a �lter where possible.6.9 Comparison of simulated mirostrutureIn setions (6.7.1), (6.7.2) a link was made between a theoretial and measuredorrelation funtion obtained from an ensemble of aousti �elds measured on realpolyrystalline materials. The analysis showed that it is possible to relate thisfuntion to the atual properties of the polyrystal investigated.In order to orroborate the analysis of this measured data, the phase sreen ap-proximation model desribed in setion (4.1) was used to simulate a set of ultrasoni�elds propagating through a simulated aberrating medium of known statistial prop-erties. Eah of these �elds propagated through di�erent simulated grain strutures,and their orresponding propagating orrelation funtions were ombined into anensemble average as desribed by the average Eq. (6.3).The symbols ls, σs stand for orrelation length and standard deviation used inthe simulations, respetively. Whereas lb, σb will stand for the best values obtainedby minimising χ2, Eq. (6.4) for eah simulation.



Experimental methods and results 1446.9.1 Simulated degree of inhomogeneity σThe statistial analysis desribed in setion (6.6.1) was performed and the resultsfor standard deviation (σ) and mean grain size (l) were ompared to the valuesused to generate the ultrasoni �elds. The simulations were repeated for di�erentvalues of standard deviation and mean grain size, and the results are illustrated inFig. (6.19). In Fig. (6.19) σs denotes the standard deviation fed into the simulation
PSfrag replaements

σs

σ
b

0.01 0.02 0.03 0.04 0.050.010.020.030.040.05
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Experimental methods and results 1456.9.2 The orrelation length lFig. (6.20) shows the result for the orrelation length of the medium. The parameter
σb and lb were obtained by solving simultaneously the minimisation of χ2 but shownon di�erent graphs.The agreement between the values used to simulate the random mirostrutureand the values obtained from statistial analysis of the ensemble autoorrelationfuntions is very good.
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Figure 6.20: Comparison of the best value lb (dots on the graph) on simulatedmirostruture. The symbol ls stands for the mean grain size used to simulate themedium. The plot is a omparison between the orrelation length lb estimated bysolving the minimisation problem Eq. (6.4), for the simulated aousti �elds in asimulated media with average grain size ls, represented by small squares.Aousti �eld simulationsOne hundred di�erent media were simulated by feeding the algorithmwith ten valuesfor σs and ten for ls, varying σs from 0.01 to 0.1, and ls from 51 to 512. For eahpair (σs, ls), one hundred �elds were generated in order to give a good estimationof the average, Eq. (6.2). The agreement between the values used to simulate therandom mirostruture, and the values obtained from statistial analysis of the



Experimental methods and results 146ensemble autoorrelation funtions is good, partiularly for the standard deviation.The spread on the estimated grain size aording to Eq. (6.4) is probably due to thefat that the mean grain sizes are reahing the size of the SLM, and the funtionEq. (5.23) beomes ompliated in that region. Thus, the spread will be redued byhoosing a wider aperture for the initial �eld.Remarks on simulationThe mirostruture was simulated using a di�erent method from that of Voronoiells. The Voronoi analysis for mirostruture simulation was not available at thetime of writing the paper [101℄, whih was part of the results, so it was deided touse the algorithm already developed by the �rst author in [14℄. Besides, the graingrowth model used is equivalent to Voronoi tesellation for many pixels and is muhfaster.The method used for simulating mirostruture has no e�et on the �nal result.The orrelation funtion of the �eld oinides by using di�erent methods as long asthe simulated mirostruture ontains onvex regions. All simulated methods leadto an exponential funtion whih is the requirement of the analysis presented inhapter (4).The above statement is equivalent to saying that as long as the simulated mediuman be haraterised by an exponential orrelation funtion it will then approximatethe ase of Voronoi ells.One of the reasons for the simulation not being repeated using Voronoi ells anbe inferred from setion (3.3.4), hapter (4) and hapter (5) as follows: The resultsshowed in Fig. (6.19), Fig. (6.20) that by omparing an estimated to a theoretialorrelation funtion, Eq. (6.3) and Eq. (5.23) respetively, then the input values σsand ls orrespond to those obtained by minimisation of χ2 Eq. (6.4). Now, it is knownfrom setion (3.3.4) that the mean grain size atually orresponds to the orrelationlength of an exponential orrelation funtion. It is also known that by using thisorrelation it is possible to generate realisations of the �eld, as it has been done inhapter (4) by using Eq. (4.17), based on Voronoi ells. By generating as many �elds



Experimental methods and results 147as neessary a simulated ensemble an be generated, an also an estimated orrelationfuntion in a simulated medium. However, sine the mean ross-orrelation of the�eld in hapter (5) uses Eq. (4.17) to obtain the theoretial orrelation �eld used foromparison in both experiments and simulations, the simulation of the �eld wouldbe unneessary.6.10 ConlusionsIn this hapter the experimental work arried out on two di�erent polyrystallinematerials, aluminium and titanium has been presented. Four speimens were pre-pared, three bloks of aluminium with di�erent grain sizes and one piee of titanium.The aluminium samples were speially built to have mainly onvex grains with ran-dom spatial distributions and to enable testing of the theoretial development aswell as to give a better experimental understanding of aberrations in relation tomirostruture. The titanium sample on the other hand was provided by industrialsta�, so it was only neessary to polish it for ultrasoni testing. The ething ofall speimens was performed by using standard tehniques for both aluminium andtitanium. In the ase of aluminium, the proedure showed the required harateris-tis so the haraterisation was performed as presented in setion (6.3) by obtainingthe mean grain size for all speimens. The ething of titanium proved to be moredi�ult than expeted, thus haraterisation of this speimen was not possible.In order to measure the aberrations in all the speimens SAWs at frequeniesof 82MHz were propagated in all the aluminium speimens. The aousti �eld ineah ase was obtained by performing a -san to obtain a two dimensional imageto show the deviations of the wavefront. The results were presented as a series ofimages in setion (6.5). The aberrations are learly seen in aluminium, espeiallyin sample MA, for whih the aousti �eld was taken at high resolution. The ul-trasoni testing of titanium at 82MHz using SAW waves was not possible so it wasneessary to hange the method for SAW generation. It proved di�ult to generateSAW in titanium using laser ultrasonis. A standard 10MHz transduer was used



Experimental methods and results 148instead. By applying the same proedure as with the aluminium samples the aous-ti �eld was obtained. The aberrations in this partiular sample were weak and laterorroborated by looking at the orrelation funtion of the �eld.The aberrations of the aousti �eld were statistially analysed so it was nees-sary to perform multiple measurements at di�erent loations in the speimen. Theaim was to measure a orrelation funtion of the �eld. This orrelation funtionneeds a set of independent measures in the speimen with same statistial hara-teristis for mirostruture. This was performed by sanning at di�erent areas overthe surfae of eah sample, thus building up an ensemble of aousti �elds. The pro-edure was repeated for eah speimen under investigation thus obtaining a meanorrelation funtion for eah sample.The importane of measuring a orrelation funtion an be seen in the ompari-son of the theoretial against the experimental orrelation funtion, whih has beenmade in setion (6.7) for the aluminium and titanium samples. From this ompar-ison, it was possible to obtain two parameters that determine the behaviour of theorrelation funtion. Theoretially, as shown in hapter (3) and (5) these parame-ters are the orrelation length l, whih is diretly related to mean grain size of thepolyrystal under investigation, and the degree of inhomogeneity σ. The estima-tion of the parameters from the measured orrelation proved to be aurate only forsamples MB and MC but not for MA sine the value of mean grain size obtainedfrom the �tting did not agree with the value estimated from the haraterisation ofthe sample. This does not onlusively mean that the theory is wrong sine therewere other fators involved in obtaining those results, suh as the mean grain sizeof the speimen. The other reason was that, due to system limitations, it was notpossible to measure ompletely the aousti �eld along the axis of propagation.As regards to the titanium sample, the values obtained for the degree of anisotropyand mean grain size unfortunately ould not be orroborated sine the photomiro-graph does not show the grains as in aluminium samples; it was thus impossible toonlude anything about the mirostruture of the sample.In order to asses the tehnique even further a set of polyrystalline environments



Experimental methods and results 149were simulated to show how SAWs propagate in a polyrystalline material. Fromthe simulated aberrations the mean orrelation funtion was obtained showing en-ouraging results despite the spread in agreement for values lose to 0.05 and 500µmfor the standard deviation and orrelation length, respetively.The overall proedure for obtaining the mean grain size from a measured orre-lation funtion an onlusively be used for polyrystalline material with relativelysimple mirostrutures. It is believed that the tehnique ould be a valuable tool inmaterial haraterisation.



Chapter 7
Disussions and further work
IntrodutionThe theoretial model and experimental work presented in this thesis overed ingreat detail the statistis of aousti aberrations in polyrystalline materials. How-ever, there is still researh to do, speially in the theoretial part.The ombination of NDE methods suh as the OSAM system together withthe statistial tehnique developed in hapter (6) ould well be serve as a tool inmaterials haraterisation. The statistial analysis of aberrations ould also aidin the ongoing researh of orreting aberrations whih is part of the ontinuousdevelopment of the OSAM system. There are several problems to be addressedonerning the work presented in this thesis along with some onlusions whih willbe disussed in the rest of the hapter.7.1 The salar modelMany aspets of the presented theoretial model are based on the elastiity of poly-rystals modelled within the framework of stohasti proesses. This theory makesuse of the full vetorial equations for polyrystalline materials. It was shown inhapter (3), than in the very partiular ase of SAW propagation in polyrystallinematerial the full vetorial theory, governed by the elastiity Eq. (3.10), an be re-



Disussions and further work 151dued to a salar approximation to simplify the desription of wave propagation inpolyrystals. The elastiity theory in polyrystalline materials helped to establishmany of the important harateristis of the materials, suh as the anisotropy of thegrains disussed in setion (3.2.3).The salar model was shown to aurately desribe aousti aberrations of SAWsin polyrystals. The quanti�ation of the aberrations was made through the two-parameter estimation in setion (6.9), by omparison to the measured orrelationfuntion in hapter (6.6). These parameters relate to the statistis of the atual mi-rostruture of polyrystals through the orrelation of the aousti �eld, developedin detail in hapter (5). The model gives an expliit expression for the orrela-tion funtion, Eq. (5.23), being able to estimate standard deviation and orrelationlength.The standard deviation was shown to be aurate when ompared to values re-ported in the literature [23℄. The model of the medium in setion (3.3.3) also showedthat, even under very restritive irumstanes, the orrelation length obtained byomparison in (6.7) an realistially represent the mean grain size for polyrystalswith mainly onvex regions.The salar theory in hapter (3) was based on existing models already in use inother areas suh as turbulene theory and underwater aoustis. Most of the ap-proximations and mathematial methods were imported into this �eld and adjustedso they ould be used to explain aberrations. The mathematial development waslimited then to approximations already in use, although an attempt was made toimprove them. For instane, in the hapter (5) the alulations for the orrelationfuntion were made without assuming that Γµ is delta orrelated in the diretion ofpropagation.As far as the model presented in hapter (3) for SAW in polyrystalline materialsis onerned, it only takes into aount homogeneous isotropi solids. This way, itwas possible to express the aousti �eld in an isotropi medium as a plane waveexpansion in hapter (4), whih was later used in setion (4.1.2) to approximatethe aousti �eld in a random medium. In order to extend the development in



Disussions and further work 152hapter (4) to materials of general anisotropy, it is neessary to alulate the Green'sfuntion of the normal displaement for materials of general anisotropy. The Green'sfuntion for solids of general anisotropy has been reported in [21℄. This, added tothe development in hapter (4), would improve the theoretial desription of theaousti �eld in random media. A major improvement to the present researh wouldbe to desribe SAWs in polyrystalline materials by removing the hypothesis of loalisotropy, Eq. (3.7), on the elasti moduli, whih means a omplete desription of aSAW based entirely on the elastiity Eq. (3.10) for polyrystals, without relying ona salar desription.7.1.1 Modelling the mediumThe most limited assumption was in modelling the medium. It has been assumedin setion (3.3.1) that µ follows Gaussian statistis and is transversally isotropi.Without this assumption, the theoretial orrelation of the �eld in hapter (5) ouldhave been more di�ult to alulate. This model works well with grains that behaveon average as if they were spheres. However, as seen in the experimental work inFig. (6.16), the assumption ould lead to problems as was the ase for the aluminiumsample for whih Fig. (6.2) in setion (6.3.1) presented ompliated geometrialfeatures, as showed in the photomirograph. A more realisti model would be toonsider a more general expression for Γµ, in the sense that it would depend on twoorrelation lengths, i.e. in x and z diretions so to model elongated grains. Theanisotropy would also have to be taken into aount, that is, Γµ would also dependon diretion. This implies that the whole theoretial development would have to bereformulated to inlude this type of mirostruture.The salar wave approah in setion (3.3.3) will have to be modi�ed so as toinlude a more general proess to model the medium rather than simply assuming aproess with a Gaussian orrelation funtion. In addition, modelling mirostruturewithin the approximations in setion (3.3.4), where grains of similar size lustertogether in ertain areas in the sample, not to mention elongated and non-elongatedgrains within the luster, would be prohibited. This behaviour did our near the



Disussions and further work 153walls of the ontainer when preparing the aluminium samples, see setion (6.2.1).The grains of di�erent sizes were ut o� by sliing the edges of the sample as theywere of no interest for the urrent researh.Thus, future work in relation to mirostruture and anisotropy within the frame-work of salar approximation will be to �nd a more suitable proess for desribingmirostruture. This means �nding a random proess to desribe general anisotropywithin grains as well as more ompliated grain shape rather than mainly onvexregions.7.2 The phase sreen modelThe phase sreen model, alongside the stohasti wave equation in hapter (3) and(4), has been developed to simulate ultrasound propagation through random me-dia. This model has been used to orroborate the tehnique of statistial analysisof the propagating energy orrelation funtion, and provides a useful test bed fordeveloping the theory, alongside the experimental work.One of the problems with the phase sreen approximation is that it an onlyhandle the forward �eld, although the same model ould be used to forward andbakward propagate the �eld to aommodate baksatter. This was not attemptedsine the primary interest was to assess the transverse orrelation of the �eld, whihresulted in the expression Eq. (5.23). The other problem is the mathematial jus-ti�ation to represent a �good� approximation to the paraxial approximation of theHelmholtz equation. This an only be done using ontinual integrals [60℄ that inpratie are extremely di�ult to evaluate. Nevertheless, the model was shownto be useful in obtaining an approximated expression for the orrelation funtionwith similar results if Γµ is assumed to be delta orrelated along the propagationdiretion.The phase sreen model makes use of the angular spetral representation of the�eld, see setion (4.1.3). In the atual alulation of the orrelation of the �eld, aparaboli approximation was used by approximating the radial appearing in the



Disussions and further work 154funtion propagator of the expansion. That is the funtion h = exp[iz
√

1− p2] wasapproximated by h ≈ exp[iz − 1
2
izp2], making possible the alulation of integralsin hapter (5). This was one of the key points in making use of the approximation.The numerial simulation showed that under the onditions used in this work theoriginal or the approximated expansion does not make a signi�ant di�erene tothe �nal result. The other interesting feature of this model is that it is possible toe�iently build realisations of the aousti ensemble using the FFT algorithm, so itis possible to ompare them to the measured aberrations in real samples. Lookinginto the future, it would be desirable to remove the dependene on the number ofsreens in Eq. (4.17) by replaing the multiple integrals by a ontinual integral soas to inlude propagation paths other than straight lines.7.3 Experimental workTwo di�erent materials or polyrystals were ultrasonially analysed using di�erentultrasoni soures, aluminium and titanium. In the aluminium sample the OSAMsystem was used whereas in the titanium sample a ontat transduer tehnique wasused as the ultrasoni soure. The idea with the transduer was to test the model atdi�erent frequenies limited to the narrow frequeny bandwidth of the transduer.Unfortunately, the titanium sample proved to be a di�ult sample in the sense thatthe mirostruture was unexpetedly ompliated. So the mean grain size was notestimated. As a onsequene, the orrelation length obtained in (6.3) ould not bedemonstrated to orrespond to the mean grain size of the material.The tehnique for aluminium samples, on the other hand, both for preparationand haraterisation of the samples generally ful�lled expetations.The objetive of the experimental work was to measure the deviations of theaousti �eld aused by the grains within the material by looking at the forwardpropagating �eld. However, it appears that SAW re�etion at grain boundariesan also be a soure of deviations in the aousti �eld, see setion (3.2.2). Thus,from the experimental point of view it would be interesting as a part of further



Disussions and further work 155researh to measure the re�eted �eld at grain boundaries. These re�etions possiblywould involve mode onversion ompliating even further a theoretial desriptionof aousti propagation. It would be useful to modify the OSAM system so that itould look at baksatter to examine the re�eted �eld at grain boundaries usingthe OSAM system.The proedure used in this work to obtain parameters haraterising materialsby minimising Eq. (6.4) needs to be reviewed if the tehnique is to be used routinelyfor materials haraterisation. That is, it will be neessary to design a better �lterto proess the data so that reliable and aurate estimation of parameters will bepossible. It is a very important point to establish to what extent the level of noisea�ets the estimation of the parameters and how to remove it. The �lter appliedfor the omparison in Fig. (6.16), did work well in general terms.7.4 Final ommentsThe theoretial development of SAWs in polyrystalline materials presented in hap-ter (3) and (4), whih ulminates with the alulation of the orrelation funtion ofthe aousti �eld in hapter (5), proved to work very well in aluminium samples withmainly onvex regions. This was demonstrated by omparing the measured orrela-tion funtion to the theoretial one in hapter (6), with good agreement. Even whenthe value of the orrelation length obtained by performing the inverse problem forsample MA did not math the mean grain size in Fig. (6.2), it is believed that thetehnique as a whole an be a valuable tool for material haraterisation, providedthe onditions disussed in the thesis are met.In summary, this work has ontributed to the establishment of a wave orrelationfuntion that quantitatively desribes the loal anisotropy and mean grain size ofpolyrystalline materials with ertain harateristis.The statistial properties of SAWs in polyrystalline materials were de�ned byseond order moments of the aousti �elds and these relate to material grain sizeand anisotropy via the theoretial orrelation funtion developed in hapter (5).



Disussions and further work 156Originality of the workPart of the work done in this thesis has been presented in a series of onferenesand has been published artiles on aousti aberrations [101, 102, 103, 104, 105℄.



Appendix A
Appendix
A.1 Multivariate propagation funtionIn this appendix a ertain type of multiple integrals that arise in propagation oforrelation funtion will be disussed. It will be shown that for very speial asesthose integrals an be evaluated for arbitrary funtion by making a simple hangeof variable.Let x = (x0, ..., xn), z = (z0, ..., zn) be and denote the vetor oordinate dif-ferene by x− = (x1 − x0, ..., xn − xn−1) and z− = (z1 − z0, ...), respetively. Themultidimensional Green's funtion is de�ned as
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Appendix 158where dx indiates that integration has to be performed on variables x0, ..., xn−1 and
f is an arbitrary funtion.If f is a funtion of x− y, z− only then I an be expressed in the following form

I = (−1)n

∫

f(xn − yn, ..., xn − yn, z)dz0,n−1 (A.3)where d0,n−1 = dz0 · · · dzn−1Let us make the following hange of variable p = x− y, q = x + y so p + q =2xand q− p = 2y therefore their quadrati di�erenes an be expressed as follow
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p−s+1]qs (A.6)with p−1 = p−n+1 = 0; setion (A.1.1) shows how to obtain Eq. (A.6). Then integralEq. (A.4) after inserting Eq. (A.6) and performing integration with respet to dq1,n−1,



Appendix 159we have
I = b
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Appendix 160A.1.1 RemarksEquation Eq. (A.6) is revisited step by step to show how it was obtained by rear-ranging the sums. Thus,
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ξ =
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an arbitrary vetor variable. The mean Eq. (5.13) onsidered in hapter (5) followsby using the umulative generating funtion for multivariable Gaussian variables[64℄, thus the ensemble average Eq. (4.14) an be expressed as,
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j Dφ(xj−yj) (A.14)where Dφ(xj − yj) = Γφ(0) − Γφ(xj − yj). The equivalene between Eq. (A.12)and Eq. (A.13) follows from the well known result for Gaussian variables; the en-semble average of an exponential random variable is the ensemble average of itsargument. After some algebra Eq. (A.14) follows, whih is the desired equivalentform for 〈s(x)s∗(y)〉. Thus, the mean 〈s(x)s∗(y)〉 is an exponential sum of stru-ture funtions. Eah struture funtion Dφ(xj − yj), orresponds to the struturefuntion of the phase sreen at position j. It has to be said that the above result isonly valid for Gaussian variables.



Appendix 162A.2 The angular representation in inhomogeneousmediumThe long expression obtained in setion (4.1.3) is developed in this appendix stepby step. The development of the expression is based on the angular representationof the �eld and the linearity of onvolution and Fourier transform.Let us �rst introdued the de�nition of onvolution of two funtions. It is os-tumery to use t as the independent variable, thus the onvolution of two funtions
f and g is de�ned as

f(t)⊗ g(t) =

∫

f(τ)g(t− τ)dτ (A.15)The starting point for writing the �eld representation in random media will be thereursive relationship Eq. (4.16) between the values of the �eld in eah sreen.For instane, using the reursive relation Eq. (4.16) and Eq. (A.15) the �eld valueat layer n = 0, n = 1, n = 2, ... are given by
n = 0 u1 = hp1

∫
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∫
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∫
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un = hpn

∫

ûn−1hpn−1 ŝn−1(pn − pn−1)dpn−1 (A.19)The �eld u2 depends on the values of the Fourier transform of u1 from the previouslayer, whih in turn depends on the Fourier transform of u0. The proess is ontinueduntil one reahes un then bak substitution is performed to be able to express unas a funtion of u0 whih is the inident �eld v as an speial ase in this notation.In the reursive relation above there is the Fourier transform involved both for unand the sreens s. To make things easy in writing suessively un let us reall



Appendix 163that kûn(k0pn) = an(pn) for all n, where an is the angular representation of unwithin layer n. Moreover, it is understood that whenever ŝn appears in the followingexpressions what it really means is ŝn(pn+1 − pn).Thus, using Eq. (A.16) to Eq. (A.19) by starting with un and substitution of theintegral representation for an−1 and an−2 one has
ûn = hpn

∫

an−1hpn−1 ŝn−1dpn−1 (A.20)
= hpn

∫
(

hpn−1

∫

an−2hpn−2 ŝn−2dpn−2

)

hpn−1 ŝn−1dpn−1 (A.21)
= hpn

∫∫

an−2hpn−2h
2
pn−1

ŝn−2ŝndpn−1dpn−2 (A.22)
= hpn

∫∫
(

hpn−2

∫

an−3hpn−3 ŝn−3dpn−3

) (A.23)
×hpn−2h

2
pn−1

ŝn−2ŝn−1dpn−1dpn−2 (A.24)
= hpn

∫∫∫

an−3hpn−3h
2
pn−2

h2
pn−1

ŝn−3ŝn−2ŝn−1dpn−3dpn−2dpn−1 (A.25)Now it is lear from the above relationship that every time one substitutes an for itsintegral representation, the Fourier transform of eah sreen forms a multipliativeseries. The same happens with the funtions hpn
inside the integral. Suessiveintegration is possible beause hpn

and ŝn are independent for every n. The �eld
un is now expressed as a funtion of an−3 in Eq. (A.25). To end this, is neessaryto substitute the representation for a0, ..., an−3 as it has been done in Eq. (A.21),Eq. (A.24) for an−1 and an−2, respetively. Allowing j to run from 0 to n the produtseries in Eq. (A.25) an be rewritten using a short notation, hene

n−1
∏

j=0

h2
pj

ŝj = hp0 · · ·hpn−3h
2
pn−2

h2
pn−1

ŝ0 · · · ŝn−3ŝn−2ŝn−1 (A.26)Using Eq. (A.26) the �eld un an be expressed as
ûn = hpn

∫

· · ·
∫

a0(p0)
n−1
∏

j=0

h2
pj

ŝj(pj+1 − pj)dpj
(A.27)whih Eq. (4.17) written in the spatial frequeny.



Appendix 164A.3 The Green's funtion for the orrelation equa-tionA.3.1 Helmholtz's equationThis appendix is dediated to the alulation of the Green funtion for the operators1. L = 2ik ∂
∂z

+ λ2. D = 2ik ∂
∂z

+ ∆1 −∆2 where ∆s = ∂2

∂x2
sCase 1.The Green's funtion for operator L is a funtion G whih satisfy the followingdi�erential equation

2ik
∂

∂z
G + λG = −δ(z − ξ) (A.28)where δ is the delta of Dira and λ an arbitrary parameter.There is a straightforward method of �nding G by using Fourier's transform.Thus, in taking Fourier transform on both sides of Eq. (A.28) one gets

−2ωkĜ + λĜ =
1√
2π

e−iωξ

Ĝ =
e−iωξ

√
2π(−2kω + λ)

(A.29)Taking the inverse Fourier transform of the above relation gives
1√
2π

∫

Geiωzdω =
1√
2π

∫

eiω(z−ξ)dω√
2π(−2kω + λ)

G = − 1

2
√

2πki

∫

ie−iω(z−ξ)dω√
2π(ω + λ

2k
)
. (A.30)Using one of the integrals from table in appendix (A.7) G takes the form

G = − 1

2
√

2πik
H(z − ξ)ei λ

2k
(z−ξ) (A.31)
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H the Heaviside funtion.The following funtion is also solution

G = H(z − ξ)ei λ
2k

(z−ξ) (A.32)Case 2.One again in order to �nd the Green's funtion for D or a solution to thefollowing di�erential equation
DG = −δ(x1 − a)δ(x2 − b)δ(z − c) (A.33)the Fourier transform tehnique is applied. The above problem is redued to �rstase by takingFourier transform with respet to x1, x2, in doing so, equation Eq. (A.33) on thefrequeny domain takes the form

2ikĜz + [ω2
2 − ω2

1]Ĝ = − 1

2π
e−iω1a−iω2bδ(z − c) (A.34)Obviously, the above di�erential equation falls in the �rst ase. In using this resulta solution an be obtained for Ĝ,

Ĝ(ω1, ω2, z) = − 1

2π
e−iω1a−iω2bH(z − c)ei

ω2
2−ω2

1
2k

(z−c) (A.35)The result follows after taking the inverse Fourier transform and using, one againone of the integrals in appendix (A.7), therefore by taking the inverse Fourier trans-



Appendix 166form of Eq. (A.35) we have
G = − 1

4π2

∫ ∫

ei
ω2
2−ω2

1
2k

(z−c) ×

×eiω1(x1−a)+iω2(x2−b)dω1dω2 (A.36)
G = − 1

4π2

∫ ∫
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2 × (A.37)
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= − 1

4π2

π

β1β2
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2πk
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eik
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−ik
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G = − k
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eik
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−ik

(x2−b)2

2(z−c) (A.38)where β1 = 1
2

√

z−c
k

(1 + i), β2 = 1
2

√

z−c
k

(1− i)A.4 Colouring Voronoi ellsThe algorithm for olouring Voronoi ell is based on expressing the funtion 1Bn
intothe omplex version. The verties that de�ne eah region Bn are irregular polygonsand its verties an be expressed in omplex numbers denoted by w1, ..., wn, wk ∈ C.Also points belonging to B are written in its omplex version. In omplex variablethe wind number is de�ned as

n(w; γ) =
1

2πi

∫

γ

dξ

ξ − w
. (A.39)The funtion n(w; γ) has the wonderful property that n(w; γ) = 1 if z belongs tothe interior of γ and zero otherwise.The path γ de�ning entirely a region Bn is de�ned pieewise by the verties as

γ = γ1 + · · ·+ γn (A.40)where γk = wk + t(wk − wk−1), t ∈ [0, 1]. The funtion n(w; γ) ounts how manytimes γ wraps around a point w ∈ B. It takes the value 1 beause γ is a lose



Appendix 167polygon that winds up only one around z.The integral Eq. (A.39) is a line integral and sine dγ
dt

= zk − zk−1, Eq. (A.39) isequivalent to
n(w, γ) =

1

2iπ

∑

i

∫

γi

dξ

ξ − w

=
1

2iπ

∑

i

∫ 1

0

(wi − wi−1)dt

wi−1 − w + t(wi − wi−1)

=
1

2iπ

∑

i

zi

∫ 1

0

dt

wi−1 − w + t(wi − wi−1)

=
1

2iπ

∑

i

ln

[

wi − w

wi−1 − w

] (A.41)So the wind number is the logarithm evaluated at the verties forming a region. Inorder to de�ne k(r) is to enough to determine the seond term in Eq. (3.22). Let usdenote γs = γs1 + · · · γsl be the lose urve eah Voronoi ell Bs has for boundaries,
s = 1, ..., N(B) and l is determine by the Voronoi onstrution then

µ(r) =
∑

s

csn(w; γs) (A.42)This a Gaussian proess simulating the wave number that relates the wave veloityto the statistis of the mirostruture.A.5 Algorithm for wave propagationThis setion presents the algorithm to numerially implement the long Eq. (4.17).An image showing the simulated �eld has been already shown in hapter (4), Fig. (4.7).
A.6 Priniple of laser-generationThe simplest and most diret way of generating ultrasound using a laser is by diret-ing the beam onto the surfae of a speimen [88℄. The absorbed light energy ause



Appendix 168Algorithm 1 Calulate u(x, z)Star with:
N ← Number of sreens
λ← Wavelength
φj ← Random proesses, j = 1, ..., N ,
v ← Inident �eldfor j = 1 to j = N do

s← eiφj

ŵ ←
∫

(vs)e−ixqdxProgate ŵ to a distane δz:
û← [ŵh(q, δz

2
)⊗ ŝ]h(q, δz

2
)

u←
∫

ûe−ixqdq Bak to spatial domainStore u and make it the new inident �eld v
v ← uend forstrain to the material thus generating ultrasound. The physis and the mathematisbehind this proess is arefully onsidered in [106℄, for instane. The author givesa relation between the rise in temperature due to a pulsed laser hitting the surfaeand Rayleigh waves.In this appendix the formulation of the thermal expansion boundary problemdue to a laser is reprodued only for ompleteness. Nothing has been added to itssolution nor its formulation.The spatial and temporal temperature distribution is governed by the heat equa-tion. If Q represents the total input heat due to a pulse laser, w(r) the normalisedspatial distribution of the laser onto the surfae and q(t) the temporal pro�le of thelaser, the appropriate boundary problem heating a free surfae of sample is givenby, [17, 106℄

∆T + χ
∂T

∂t
= Qw(r)q(t)

T =
∂T

∂t
= 0 t ≤ 0 (A.43)where χ is the temperature ondutivity.As the temperature rises (above ambient temperature) at (r, t) the absorbed light



Appendix 169produes stress-free strain. The author in [17℄, onsiders the additional boundaryondition
n·∇T (r, t) = 0, r ∈ S, t > 0. (A.44)This ondition establishes that no heat is lost by ondution or radiation as pointedout by the author. Sine strain is related to the temperature by the following relation

ǫkl(r, t) = αδklT (r, t) (A.45)Here α represents the thermal ondutivity and δkl the Kroneker delta. One ofthe remarks in [17℄ is that the displaement an be diretly related to displaementgenerated by thermal expansion as
u(r, t) = Aq(t)⊗ g(r, 0, t) (A.46)where A is a onstant that depends on material harateristis and g is the Green'sfuntion that gives the normal displaement due to a point soure. The displaementrepresented as a onvolution of the Green′s funtion and the laser pulse is veryonvenient for extended soures. The onstant A is important for theoretial andpratial purposes but in this work is less important sine we are mostly onsideringnormalised quantities.For the sake of ompleteness the de�nition of the onstant A is given, that is
A = −1

8

κ

πµc2
T

EαkQ

(1− 2ν)K
S (A.47)where

E, µ = Young and shear modulus, respetively
cL, cT= Longitudinal and transverse wave speeds, respetively
ν = Poisson ratio
k, K =The thermal di�usivity and ondutivity, respetively
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α=linear oe�ient of thermal expansion
κ =

c2
T

c2
L

.The whole artile [17℄ is dediated to the alulation of g for di�erent soure loationsinluding the ase when the soure lies on the surfae. This representation for g isthe one that is used in this thesis to theoretially represent SAW in homogeneousmaterials. The funtion q depends on the laser used. In the experimental work anNd:YAG laser was used that has q = t
τ2 e

−t/τ as temporal pro�le. Here, τ is thepulse duration whih is approximately 12ns for Nd:YAG Laser.A.6.1 Displaement from an array of linesThe pattern delivered onto the surfae by the SLM is a series of straight lines,Fig. (A.1). The displaement for an array of N straight lines evenly distributedis easily extended using the development in setion (4.1.1) in hapter (4). Thus,one again if uy is the displaement for a single line, the displaement of a soureomposed of N lines is given by
u =

N
∑

n=1

uy(t− n∆t) (A.48)The di�erential time is ∆t = λR

cR
where λR is the wavelength of the Rayleigh wave.The reason for appearane of the ultrasoni wavelength in the separation of thelines is beause this the only way to generate SAW using this type of soures. Thusprevious knowledge of the wave veloity in the material to investigate is requiredor at least a good guess in order to generate SAW with the OSAM system. Atypial value for λR in aluminium would be 35.5µm approximately for ultrasoundgeneration at the frequeny of 82MHz. The size of the SLM is �xed, so is a withan approximated value of 2mm. The value b is a funtion of λR and the number oflines.The sum above is easier to look in the ω-domain; thus, performing Fourier trans-
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{

PSfrag replaements
N

a

b

λRFigure A.1: Array of N illuminated lines by a laser. a, b are the width and length,respetively of the lines and λR is the Rayleigh wavelength whih is the distane ofseparation between adjaent lines.form gives
û(r, ω) = ûy(r, ω)

∑

e2πiωn∆t

= eπiω(N+1)∆t sin(πωN∆t)

sin(πω∆t)
ûy(r, ω) (A.49)where ûy is the Fourier transform of uy. Here, ω is the angular frequeny ω = 2πf , fthe normal frequeny. Looking at the Eq. (5.13), one an observe that the amplitudeof displaement due to a line soure is being modulated by sin(πωN∆t)

sin(πω∆t)
and the phaseby an amount of πω(N + 1)∆t for eah frequeny omponent. For a more detailedanalysis of soures of the this type [107℄ is suggested.A.7 Useful integralsUseful integral used within the text

∫

e−β2t2−iqtdt =
√

π
β

e−q2/4β2 ℜβ > 0 [70℄
∫

e−iωtdt = 2πδ(ω)
i√
2π

∫

e−iωtdω
(ω+ξ+ic)

= H(t)e−ct+iξt [78℄Table A.1: Useful integrals
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