High frequency ultrasonics using optical fibres

From Applied Optics Wiki
Jump to: navigation, search

Motivation

Optical fibres have been used to propel the fields of optical and acoustic endoscopy, due to their ability to transmit information (such as an image) in and out of extremely confined environments. There is great interest in developing an optical fibre probe which functions using GHz frequencies of ultrasound. This would allow high resolution inspection of microscopic environments and specimens, where lateral resolution would be dictated by the diamter of the fibre core (~ 5 μm), and axial resolution would be determined by the acoustic wavelength (~ 300 nm). The fact that the device operates acoustically means that label-free high contrast can be achieved through the mechanical properties of the specimen, while still remaining non-contact. Such a device could be implemented in a wide range of scenarios, especially ones in which access to the sample plane is limited and ill-suited for traditional bench-top acoustic and photoacoustic microscopy. For example, optical fibre sensors could be readily integrated through the bore of a needle during fine needle aspiration procedures and other biopsies, or in the form of imaging bundles which are already widely utilised in clinical endoscopes.

Brillouin fibre-spectrometer

The phonon probe consists of a single mode optical fibre which has been coated with 15 nm of gold onto its distal end. This fibre transducer is then integrated into a pump-probe spectroscopy system consisting of two pulsed lasers with 100 fs pulse widths. The pump and probe pulses are synchronised using asynchronous optical sampling (ASOPS) in order to vary the time delay between the two beams over a time window of ~10 ns. The gold serves as a photoacoustic source which, upon absorption of the pump beam, thermoelastically generates ultrasound within a ~100 GHz bandwidth. When coupled with a liquid medium such as water, the GHz acoustic waves periodically modulate the refractive index of the medium due to the photoelastic effect. This sets up a moving diffraction grating for the probe beam, and results in Brillouin scattering. The interference of the inelastically reflected probe beam with an elastically scattered reference beam modulates the optical reflectance creating a time-resolved reconstruction of the acoustic mode.

Sal fig1.png
Sal fig2.png

Viscoelastic properties of the probed medium can be obtained by evaluating the frequency and attenuation rate of the sampled phonon. Through Brillouin scattering, the phonon frequency is directly related to the sound velocity of the medium, and therefore its elasticity. Therefore, by measuring the Brillouin frequency of an object, one gains access to the unique elastic signature of the object-material. This system can then be used as a spectrometer, which is capable of detecting in real-time when the fibre-tip is in contact with specific liquds: water, glycerol, gelatin, blood plasma, methonal, etc. The fibre-spectrometer is also capable of detecting and characterising changes in the temperature and salinity of an object. Through thermo-optic, thermo-acoustic, salino-optic, and salino-acoustic effects, changes in temperature or salinity will modulate refractive index and sound velocity, producing a shift in the Brillouin frequency detected by the sensor.

Sal fig3.png
Sal fig4.png

Viscoelastic properties are promising biomarkers for health and development; the mechanical properties of cells, tissues, and their surrounding environments greatly influence



Publications