
SIM HOL - An implementation of the angular

spectrum propagation method for reconstructing

holograms designed using DS EXPT

Matt Clark

March 4, 2005

1 Release notes

This is sim hol (c) Matt Clark September 2002 This release is covered by GPL.
The license statement is located at the end of this document in section 5 and
full details were included in this distribution in a file called COPYING.

1.1 Revision history

1998 sim ap version 4.5
2002 sim hol pared version 1.0 GPL public release.

2 Introduction

SIM HOL is a program which can simulate the reconstruction of holograms.
Specifically it uses angular spectrum propagation to project the complex am-
plitude (optical wave) which results from the hologram across free space to
an image plane. It contains a few handy features useful for simulating holo-
grams designed using the DS EXPT direct search hologram design program. In
particular this includes loading of .hol files formats and automatic scaling or
transformation of the reconstruction.

3 Building the software

3.1 FFT

This program uses FFTs to go to and from the angular spectrum representation
of the wavefield. This implementation uses the excellent and publicly available
FFTW library. This implementation also exclusively uses the double precision
library which on my system is installed as libdfftw and uses the header files
dfftw.h. If you only have double precision libraries installed you may have to
use libfftw and fftw.h (note the missing d).

1



3.1.1 Getting FFTW

You can obtain fftw from http://www.fftw.org or it may have been bundled
with this software. It is (in my experience) simple, easy and reliable to build.
Recently I have been using an rpm or deb file to install fftw - this seems to work
with the linking with no additional effort.

You must use fftw version 3 or above.

3.1.2 Using other FFT packages

You can easily use another FFT routine by hacking the source code. I can’t
see why you would bother though, FFTW is generally pretty fast in all circum-
stances. Obtaining it and building it is easier than the trivial source code hacks
required to use an alternative.

3.2 Making the software

Once you have a FFTW the next steps should be easy, unpack the source code
and then use “make” to build it. If you have put FFTW in a non-standard
place you may have to point the make file to the headers and libraries.

The only build option is to supply a filename for the storage of FFTW wis-
dom files. The default is “/tmp/sim hol.wisdom” which isn’t such a bad place
if you aren’t on a shared machine. this file should really be deleted everytime
you recompile - you can do this manually.

4 Using the software

SIM HOL takes one argument, the name of the control file. Traditionally this
name ends with .sim. A typical .sim file looks like this,

inname gasket_gs.hol
outname gasket_gs.dat
focal_length 0.5
psize 10e-6;
pixels 512 512
autoscale
phase 2

two other commands are supported in this version: N <xx> sets the simulation
size overriding the autoscaling choice and F bar <ff> sets the ”focal length” of
the zoom / scaling maths, a setting of 0 indicates infinity. F bar defaults to 0
(infinity) without autoscaling enabled and is set by the program if autoscaling
is enabled. If autoscaling is enabled then the value supplied for the focal length
(F ) is overridden by F ′, otherwise the reconstruction takes place at F . inname
sets the input filename, outname sets the output filename, psize sets the pixel
size of the input, pixels sets the number of pixels in the hologram, autoscale
enables autoscaling and phase sets the number of phase levels used in the holo-
gram.

The input format is binary signed chars for the .hol files and binary double
precision C++ complex numbers for the output.

2



4.1 Autoscaling

In most hologram designs the spatial size of the image is far larger than the
spatial size of the hologram. The hologram must be sample with at least one
simulation pixel per hologram pixel. The number of pixels (at this size) required
must be adequate to contain the image (otherwise you get aliasing). Without
scaling meeting these two conditions can require extremely large arrays.

With the scaling transform the effective size of the pixels can be transformed
during propagation so all you need is an array size that adequately samples the
hologram. If left to the program the number of (linear) pixels used is the next
power of two greater than the number of (linear) pixels in the hologram. The
pixel size is then scaled to so that this array fits the image. The image size is
computed by considering the critical first order diffraction angle of the hologram.
This is a little conservative so watch out.

For a technical explanation of how this works read the next section otherwise
be content that this feature saves you lots of hassle.

4.1.1 Autoscaling - technical

Despite what I said in the above section it is not possible to transform the pixel
size - this remains constant. Instead what is done is to transform the field of
view, this is performed with the mathematical equivalent of a zoom lens. The
image (with the addition of the zoom lens) is refocused from the original plane
at F to F ′ the propagation then takes place not to F but to F ′. This transforms
the field of view by a factor F ′/F which is equivalent to transforming the pixel
size to F/F ′.

F

F

F’

Image size est. from maximum 1st order diffraction angle

Hologram aperture (next power of 2 up)

"zoom
" lens

H
ologram

 is prop’d to F’ w
ith the help of "zoom

" lens

Figure 1: Schematic showing how autoscaling works

You can set your own scaling by not specifying autoscale and setting N , F̄
(F bar) and F manually (in this case F actually sets F ′ the actual propagation
distance). You can calculate F̄ using simple thin lens formulae.

5 License - GPL

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

3



This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

References

4


