
DS EXPT - An implementation of a direct search

algorithm for the computer design of holograms

Matt Clark

March 4, 2005

1 Release notes

This is ds expt (c) Matt Clark September 2002 This release is covered by GPL.
The license statement is located at the end of this document in section 8 and
full details were included in this distribution in a file called COPYING.

1.1 Revision history

1991-1994 Many versions
1995 ds
1996 ds bin
1997 ds ap
1997 ds new
1998 ds gs
1998 ds expt version 0.9
2002 ds expt pared version 1.0 GPL public release.
2005 ds expt pared version 1.1 GPL public release (fixed to compile of modern
compilers).

2 Introduction

2.1 Where it comes from

This program is a synthetic hologram or computer designed hologram design
program. It implements an algorithm described in Applied Optics [1]. This
algorithm is in turn based on the state-variables direct search method described
in Optics Communications [2]. If you publish work based on this algorithm
please cite these two papers rather than the program. The program can imple-
ment either algorithm. It implements the state-variables and grey-scale modified
state-variables costs functions, fringe follow / pixel preselection, memory effi-
cient random exhaustive searching and optimal stopping and starting functions
with N+1 start states and N finish states with mopping up at the end of sweep
1 and probabilistic run length optimisation.

Many other things have been implemented in the past but this is all you
really need.

1



2.2 What it does and doesn’t do

This program implements the modified state variables direct search algorithm
for the computer design of holograms.

If you are new to this you will need to get your head around some concepts
before starting, just in case,

This will not allow you to; 1) Make holograms - you need a fabrication fa-
cility. 2) Make / design pictorial holograms or display holograms or anything
resembling a nice picture you can actually look at (in principle you can but
no design or fabrication facility on earth would permit you to make anything
worthwhile here - I (matt) have looked into my (rather small) hologram aper-
tures and directly observed the image in space - I don’t recommend this unless
you are very confident about your exposure / eye safety levels). 3) Produce a
3d display on you computer.

What it can do is to produce a highly optimised quantised (fabricatable)
phase distribution tailored to your optical input which produces a near optimal
image. The image can be three dimensional and it can contain many levels of
intensity (grey scaling). If you fabricate the hologram the real world perfor-
mance will arbitrarily closely match the design performance (or the simulation
performance) (there is no loss of performance between design and fabrication
provided you fabricate accurately).

2.2.1 Properties of the direct search

• Designs are stand alone- no additional optics are required to reconstruct
them - they focus themselves.

• The designs achieve diffraction limited optical performance - the diffrac-
tion limit is defined by the hologram aperture and the working distance.

• The diffraction efficiency is close to the theoretical maximum for the type
of hologram designed. By “close” I mean that it is close enough for the
precise definition of efficiency to matter more than any measurable loss of
efficiency.

(if you are very unlucky and uncover a special symmetry you can beat
the “theoretical maximum”- this tends to make rather poor solutions as it
unbalances the cost function - sounds impossible? well it is just a technical
matter really and not very interesting)

• Noise - the noise is measured to be in line with the theoretical minimum
as discussed by [1]. That is the noise levels achieved are extremely good
- the noise you end up with is unavoidable and results from the optical
properties of the hologram itself - changing the optical setup is the only
way to reduce the noise see [1].

• Practical use - use this algorithm to design your CGH, simulate it and
then make it. If you make the hologram perfectly you will get exactly
what you expect from the result of the design and simulation processes -
no loss of quality or performance between design and realisation.

Qualifiers - there are some physical limitations that the design algorithm
is not aware of - use it outside of these (very wide limits) and things won’t

2



be as perfect as claimed. Stick to the sampling guidelines and you’ll be
OK.

• Flexibility - you could adapt this algorithm to almost any optical setup-
for instance it is perfectly possible to design reflection holograms or to put
the hologram over a curved surface - you can also do things like multi-
wavelength optimisation with this technique. However, all you get in
this release is the code for designing single wavelength flat transmission
holograms with the hologram elements laid out on a rectangular grid-
if you absolutely must have the code for designing a hologram over an
aspheric lens surface using fractal or Penrose tiling aperiodic pixel tiling
you’ll have to contact the author - I don’t really expect to hear from
anyone - these things while interesting aren’t particularly useful and can’t
be made as far as I know.

3 Building the software

This software should be easy to build on any Unix platform. It has been built
and used under Solaris, Cray-Unicos, Digital Unix / Tru64 and Linux. You will
need a modern C++ compiler - I use g++ from gcc.

Steps to building-

1. Obtain and unpack the latest tar file in a sensible directory.

2. Build the software using make (type “make”) - you may need to modify
it which is easy because it is a very simple makefile.

3. copy the executables to wherever you put your executables - then you are
all done.

4 Running the software

Assuming you have .con and .pos files ready the program is run from the com-
mand line like so ds expt myfile.con, it generally takes a while especially if
you have a big design so you’ll probably want to run it in the background. If
you have enabled reporting you can see the progress by looking in the report
file.

Once the program has finished you will probably want to look at it using
sim ap or something similar (sim ap should be available where you got this).

5 Control files

Each hologram requires a control (.con) file and one or more image position files
(.pos). The format of the .pos files varies according to the type of image you
want to design.

The control file is divided into three sections one for the algorithm and
program, one for the hologram and one for the image. A typical control file
looks like this

3



#-------------------------------------

options
report gasket_gs.rep 5000

endoptions

#-------------------------------------

hologram gasket_gs.hol
psize 0.000010 0.000010
pixels 512 512
phase 2
wavelength 633e-9
beamtype 0
stable_at .05
circular_aperture

endhologram

#---------------------------------------

3dgsObject gasket_gs.pos gasket_gs.amp
imagesize 3513

end
endcon

5.1 Options section

This is virtually obsolete - the report command defines a file where the pro-
gram dumps diagnostic data, the numerical argument defines how many trials
(iterations) between data dumps. Use this if you wish to follow the progress of
the program.

You can define cost parameters a and b here although they default to 2 and
1 which is a good generally setting.

The final option is max sweeps which limits the number of complete holo-
gram iterations (the number of times the whole hologram has been tested) - it
defaults to 100. In practise the algorithm completes long before this, it is just
there to prevent the program from using an infinite amount of computing time
due to parameter errors.

5.2 Hologram section

This contains a large number of options - notice the name of the hologram file
follows hologram.

• psize <x> <y> defines the size of the hologram pixels in metres.

• pixels <x> <y> defines the number of pixels in the hologram (if an aper-
ture is imposed then the number used is less than x×y).

4



• phase <levels> defines the number of levels of phase permitted, 2 =
binary phase hologram. The limitation on the number of phase levels
is determined by CGH TYPE which is currently char. This limits the
number of levels to 128 - in practice run time is (roughly) proportional to
the number of levels and more than 16 levels has very little effect on the
quality and efficiency of the result.

• wavelength <λ> wavelength of the incident light in metres

• beamtype <type> This release supports uniform intensity (0) or Gaussian
(1) - set the width with beamdata <w>. Other types are available but not
included in this release.

• stable at <prob> This defines when the algorithm stops. The algorithm
stops when the probability of accepting a change falls below this value.
This probability is estimate over a sample of 10000 trials - the error in this
estimate is around 1% so values below 1% aren’t really accurate (muck
with samplesize in the source if you want). The measurement is mucked
with because of the random exhaustive search technique and the true stats
are very complicated. Rules of thumb - just trying it out use 0.05 - making
a production quality design use 0.01.

This setting affects the quality and efficiency of the design - see [2] for
a better explanation of how it does this and what it costs in terms of
optimisation time.

• circular aperture makes the pixels inside of the biggest circle that fits
into the gird of pixels active and those outside inactive. Without this the
program uses all the pixels.

• aperture file loads an aperture definition file - I can’t see anyone using
arbitrary apertures and I can’t remember the format ask if you need it.

5.3 Image section

There are three image types supported in this release, 2dObject, 3dObject and
3dgsObject. Other types are available including phase and phase constrained
objects, patches and pixel maps but I can’t see anyone really wanting them as
they are complicated and don’t add much in the way of non-research advantages.

You can have any number of objects defined, I can’t recall exactly what
happens if you mix and match gs and non gs types (I think the non gs types
default to their intensity being equal to the maximum intensities in the gs
objects, I think all gs types match their maximum intensities - a small bug
sorry).

Each follows a similar format- after the image type you get the .pos file name
and the .amp filename. The optimisation results end up in the .amp file - you
probably don’t care about this though and will use a full reconstruction instead.
The file format is ASCII and follows real imaginary <CR> in the same order
as the .pos file.

The format of the .pos file varies from object to object, in these three cases
they are all ASCII lists and you need to tell the object how long the list is with
imagesize.

5



• 2dObject you need to specify an additional parameter distance the dis-
tance from hologram to image (z) in metres.

The file format is x y<CR>.

• 3dObject The file format is x y z<CR>.

• 3dgsObject The file format is x y z I<CR> where I is the relative inten-
sity around the object.

6 Outputs

The hologram is saved as binary chars, one char per pixel.
The image amplitude data is saved as binary complex <CGH TYPE>, (CGH TYPE

is currently defined as double).
Redefining the type to float can have a performance enhancing affect on

some platforms, however error analysis and experiment suggests that numerical
accuracy is an issue with CGHs larger than 128×128. On many platforms (for
instance Alpha and Cray YMP8) changing to float actually slows things down
- if you care benchmark first.

On a potentially interesting note the algorithm is robust in the face of these
numerical errors- while there is a divergence of solutions due to the errors the
algorithm still converges to a stable good solution. This is the basis behind
a variation on the direct-search algorithm designed to give linear speed up for
massively parallel architectures despite Amdahl’s law.

7 “Strange” curves

If you look at the data produced in the report files and plot a few of the following
graphs time (column 1) vs probability of accepting a change (column 2), time vs
Cost A (or mean normalised intensity) (column 3) and time vs Cost B (or noise
of mean normalised intensity) (column 4) you might be forgiven for thinking
the graphs to produce strange curves.

7.1 Jumps and discontinuities

If efficiency and convergence time were not so important the hologram pixels
would be chosen for trial at random - this gives two problems. (1) This would
result in some pixels being reexamined soon after they had changed - since the
solution would not have changed significantly the chance of the changing again
would be very low. This phenomenon has been extensively studied and it was
found that roughly 20 percent of all trials were null because of this (regardless of
problem size) this leads to an increase in convergence time. (2) There is a finite
probability that some pixels may never be tested - especially if the program is
near optimal in computing efficiency - this leads to additional noise and slows
the convergence down as these remaining pixels are randomly sought.

The solution is to use random-exhaustive selection (other non random ex-
haustive selection methods introduce artifacts and noise and slow down conver-
gence - they can even prevent the solution converging). This algorithm imple-
ments random-exhaustive selection using a modified scrambled list procedure

6



which goes like this - a list of all the pixels is made, this is then randomly
scrambled, the trials are then selected by going through the list. This in turn
has a problem - the list requires far more memory than the hologram itself (8
times more) which is slow and very inefficient. The modified version generates
a list for the X and Y coordinates of the pixels, the trials are then taken by
chosing (x,y) pairs from the list. This obviously only generates Nx trials rather
than Nx×Ny trials so the X list is rotated every Nx trials to generate Nx×Ny

unique pairs. This “looks” random, it has pretty good random statistics and is
fast and efficient.

Once the list has been used it is rescrambled - this prevents any fixed pattern
noise associated with the list and it is this rescrambling that is responsible for
the “strange” appearance of the graphs, without it (or with random selection)
you get much smoother curves - in fact this smoothing out comes from the
inclusion of a large number of unsuccesful trials associated with the decaying
correlation of current solution with previous ones. The jumps you see occur
when the list is rescrambled (or resused).

7.2 Hike in probability, flat spot in intensity and rising
noise

At the second sweep (after the first rescrambling of the list) you will notice a
large (temporary) increase in the probability of accepting a change. During this
time the solution appears to get worse rather than better (Cost A stays flat and
Cost B increases).

This occurs because the algorithm is forced to accept bad changes. To
understand this you have to understand that the initial solution contains phase
and amplitude information - accepting the bad changes removes the amplitude
information and incurs the performance penalty you observe.

The amplitude information arises from the starting function used which de-
termines the initial state of the solution. Traditionally this is a random phase
distribution but this locks in noise and wastes time (because the initial image
has to be calculated). In this program the optimization starts at the begining
- the initial solution allows an additional state - pixel turned off. This elimi-
nates the locked in noise associated with random (or fixed pattern) starts and
saves time by eliminating the front end calculation of the initial solution. It has
been shown to be worth at least 20 percent of the run time and to improve the
reliability of convergence significantly.

At some point (early on) all the remaining off pixels must be forced on, this
shows up as an increase in the probability of acceptance, rising noise - as you
can see from the flat intensity during this time these off pixels contribute little
to the solution.

It looks strange but this approach really does speed things up and more
importantly it really does increase the performance of the algorithm (it reduces
fixed pattern noise, opens additional routes through the solution space which
enables faster convergence reduces the chance of being caught in a dodgy local
solution).

7



8 License - GPL

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

References

[1] Matthew Clark. Two-dimensional, three-dimensional, and gray-scale im-
ages reconstructed from computer-generated holograms designed by use of
a direct-search method. Applied Optics, 38(25):5331–5337, 1999.

[2] Matthew Clark and Robin Smith. A direct-search method for the computer
design of holograms. Optics Communications, 124(1-2):150–164, 1996.

8


