
Linux driver for Physik Instrumente PCI C843

card

Version 0.70

Matt Clark

March 2004

Contents

1 Acknowledgements 4

2 License 5

3 Revision history 7

4 Known issues 8

5 Notes for windows users 9
5.1 Compiler / library / API / GUI differences 9
5.2 Device drivers under Linux / Unix 9

5.2.1 How devices drivers appear 10
5.2.2 Major and Minor numbers 10
5.2.3 Windows DLL and Linux library differences 11
5.2.4 Function names . 11
5.2.5 Types and function calling conventions 11
5.2.6 Numeric constants . 12
5.2.7 Call by arguments . 12
5.2.8 RESET . 12

6 Description of software 13
6.1 SMP and non ix86 systems . 13
6.2 PCI compliance and hardware limitations 14
6.3 Driver limitations . 14
6.4 Performance . 14
6.5 Asynchronous notification of events 15

6.5.1 Ringbuffer overflow . 16

7 Obtaining and installing the software 17
7.1 Getting the source code . 17
7.2 Installing the software ready to build 17
7.3 Before building.... 18

1

8 The kernel driver 19
8.1 Building the driver . 19
8.2 Installing the driver . 19
8.3 Removing the driver . 21
8.4 Installing and removing while preserving the stage position . . . 21

9 The userspace library 22
9.1 Building the library . 22
9.2 Installing the library and header files 22
9.3 Compiling user programs with the library 23
9.4 Porting windows code . 23

9.4.1 Comparison with the PI windows DLL 23

10 Utility / Example programs 24
10.1 motion control . 24
10.2 Saving and recalling the origin 26

11 Library reference 27
11.1 Windows DLL to Linux library conversion 27
11.2 Function library . 29

11.2.1 IO primitives . 29
11.3 IO user functions . 29
11.4 Utility Functions . 33

11.4.1 Opening and initialising the board 33
11.4.2 Note on pi reset board(); and PI RESET 33
11.4.3 Automatically configuring the axis 34
11.4.4 Setting / getting the stage resolution 35
11.4.5 pi get cpm(PI AXIS axis, float cpm) 35
11.4.6 Initialising Axis and limit switches 35
11.4.7 Finding the home position 36
11.4.8 Controlling the analogue motor and brake amplifiers . . . 37
11.4.9 Reading and writing the digital IOs 38
11.4.10Stopping the stages quickly 38
11.4.11Setting the home or reference position 38

11.5 Functions which move the axis 39
11.5.1 Vector movement . 40

11.6 Functions which get information from the card 40
11.6.1 Determine if the axis is moving 40
11.6.2 Finding the position of the stage 41
11.6.3 Finding the velocity of the stage (deprecated) 41
11.6.4 Finding the velocity of the stage 41
11.6.5 Setting the velocity of the stage 41
11.6.6 pi get limit status . 41
11.6.7 Inspect the motion controller registers 42

11.7 Asynchronous data capture . 43
11.7.1 Asynchronous data capture: example 44

2

12 pi execute();
PI compatibility functions 46
12.1 Introduction . 46

12.1.1 Implementing QFL function without the pi execute library 46
12.2 Building the pi execute library 47
12.3 Compiling with and using the pi execute library 47

12.3.1 Dependencies . 47
12.4 pi execute() . 47

12.4.1 Differences between pi execute() and execute(); . . . 48
12.4.2 Simple pass through commands 48
12.4.3 Simple emulated commands 50
12.4.4 Complex commands . 51
12.4.5 FEN, FEP and AutoFindEdge 51
12.4.6 Comment on selected commands 52

12.5 Direct emulation of the QFL command set 53

3

Chapter 1

Acknowledgements

Physik Instrumente (PI) GmbH and Co. KG supported the development of this
driver by donating / lending hardware and software support. They have gone
out of their way to support the Linux community. This software provides a high
degree of functional compatibility with PI’s existing software (especially their
Windows driver and DLL).

4

Chapter 2

License

This software and documentation is cover by GPL and / or LGPL public li-
censes. This basically means you have access to the source code, you can modify
the code, you can distribute the code and you can use the code all free. You can-
not charge for this code in any way shape or form. If you distribute a modified
version of the code it must be subject to these original license conditions.
The driver released under GPL, since the driver is stand alone and embedded
in the kernel the license does not extend to userspace code which accesses the
driver.
The library is released under LGPL - this means to can compile the library into
your code without any obliging you to use GPL on the resulting application.
You can find all the details at http://www.gnu.org/licenses
The GPL license covering the documentation, driver and any utility / demon-
stration programs:

Copyright (c) 2003 Matt Clark

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foun-
dation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

The LGPL license covering the library:

Copyright (c) 2003 Matt Clark

5

This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA

The full licenses can be found at http://www.gnu.org/licenses.

6

Chapter 3

Revision history

Revisions 0.10→0.40 development versions.
Package release 0.41 first beta release.
Package release 0.50 addition of pi execute() and related functions.
Package release 0.51 addition of pi find home() and pi vector xxx()..
Package release 0.52 driver interrupt handling revised.
Package release 0.53 additional functions added pi limit status().
Package release 0.54 additional functions added: pi [sg]et vel cps() and
pi stop dead(). Documentation updated for pi find home(), pi vector xxx(),
pi limit status(), pi [sg]et vel cps() and pi stop dead().
Package release 0.60 additional function added pi set pos(), additional utility
programs added pi save pos and pi recall pos, makefiles and install scripts
updated.
Package release 0.61 removal of pi reset board(); in pi openbaord();.
Package release 0.62 - Allow multiple calls to pi openboard and pi closeboard,
minor bug fixed in pi execute.h (PI REPORT SIZE mispelled), tidying up of the
package (some unwanted files removed) and minor bug fix in library/Makefile
(now installs ../driver/pi stage.h to headers).
Package release 0.63 additional functions added pi auto stage(), pi move xxx um(),
pi [gs]et vel umps and pi set cpm(). Autoconfig database facility added.
Package release 0.70 additional functions added pi set pos um(), pi get pos um(),
pi get pos err um(), pi get pos4 um() and pi get cpm(). pi get pos4 in-
cluded in the header files (it was ommitted by mistake in previous versions).

7

Chapter 4

Known issues

There are no known issue with this software.

8

Chapter 5

Notes for windows users

If you are familiar with Linux skip this chapter. At the request of PI I have
included this to explain some differences between Linux and Windows and how
this affects device drivers and more importantly compatibility between Windows
and Linux software using the respective drivers.

5.1 Compiler / library / API / GUI differences

The main difference you will notice is the compilers - windows users will prob-
ably be familiar with some variant on MS visual C++ with access to a large
windows API. Under Linux you will almost certainly be using G++ from the
GCC compiler suite and will have access to standard Unix libraries. G++ aims
to conform to the ISO 14882 C++ Standard and POSIX standards. You will
have no access to any windows API functions and this will probably mean a
complete rewrite of your code.
You will probably have to start by removing any idea of a windows based GUI
- my suggestion is that you start with a command line based text program and
then implement any GUI on top via the internet / mozilla / apache / PHP (my
solution) or Tk / Tcl scripting language. You can support X-windows directly
but you face a fairly severe learning curve - you may want to start with libsx - a
simplified X windows library which is adequate for most GUIs and a lot simpler
than full X.

5.2 Device drivers under Linux / Unix

Devices drivers under Linux / Unix are bits of the kernel (operating system)
that are accessed via standard library calls that are (more or less) common to
all flavours of Unix / Linux. These library calls are basically C IO calls. File
and device access under Unix is essentially the same (although file IO is really
stream IO which is another layer built on top of the basic IO functions).

9

Most device drivers are implemented as “loadable kernel modules” - bits of
compiled code that can be inserted and removed from a running kernel. They
must be compiled specifically for the kernel that is running - even a minor
difference can result is big trouble. Never force a module to be loaded if it
complains about incompatible versions - you could crash your computer and lose
all your data! Fortunately it is simple to avoid, in a standard installation all
you have to do is recompile the driver whenever you update or recompile your
kernel. This is a trivial step in the installation process. The kernel will refuse
to load an incorrect driver.

5.2.1 How devices drivers appear

In Unix there is a generally philosophy of treating everything like a file (excep-
tion network drivers). Device drivers are accessed through special files which
are normally found in the directory /dev. To open a device driver you open its
entry in /dev like a file, to send data to it you write to it, to get data out of it
you read from it etc.
Through this special file (and via the library functions open, read, write, ioctl
and close for char special drivers) you communicate with the device driver in
the kernel - this device driver then directly communicates with the hardware to
get the jobs done.
There are two basic types of device driver file that you will encounter block
special and char special. They support different library functions - ignore block
special drivers they are primarily for raw disk drives and other storage media
which support the mount command.

5.2.2 Major and Minor numbers

Special file entries for drivers come with two numbers associated with them
the major and minor device numbers - you need to know what they do, once
you know you can forget them. The major number links the special file with
a particular driver - when you open this file the system opens communication
with the driver that is registered to that number. The minor number is used as
private data by the driver - typically this is used to refer to a particular device.
For instance, the major block device number on my computer for IDE devices
is 3 and all device drivers for IDE disks have 3 as the major number and then
minor numbers that refer to physical disks or disk partitions:

file /dev/hda*
/dev/hda: block special (3/0) ## the actual disk
/dev/hda1: block special (3/1) ## my /boot partition
...
/dev/hda2: block special (3/2) ## my / partition
...
/dev/hda3: block special (3/3) ## my swap partition

10

There may be loads of other entries in /dev/ which don’t actually relate to real
hardware - just ignore them - it is common practise to have entries like this - if
you try to use them you will get an error.

What you need to know about these numbers

The driver this library installs is called /dev/pi stage, the major number will
be dynamically allocated at install time by the install script: this major number
may change from install to install and from reboot to reboot. You don’t really
need to worry about this so long as you use /dev/pi stage to access the driver
and the install script.
The minor number is not used at present and is reserved for selecting between
multiple cards (and different stages) if this is ever supported.

5.2.3 Windows DLL and Linux library differences

The are a number of differences between the Windows DLL and Linux library
- most of which arise from the differences between the operating systems.

5.2.4 Function names

The first difference you will probably notice between the windows DLL and the
Linux library is that the function names have changed. All the Linux functions
start with pi and with the exception of the pi xxxQMC() functions all the
names are in lower case consistent with Linux programming styles.
The prefix on the names is to differentiate the functions from their windows
counterparts (because there are some functional differences) and to prevent
namespace pollution (for instance my hardware control program controls 22
separate bits of hardware each of which has an init board() type function -
the prefix prevents conflicts).

5.2.5 Types and function calling conventions

The are several defences between Windows and Unix types which result in dif-
ferences between the libraries the most important are:

No HRESULT

Windows API functions usually return HRESULT, consequently most DLL func-
tions that return data usually do so via a pointer. HRESULT does not exist in
Unix so most library functions return either void or data.

sizeof(int)

ints are 16 bits under windows and at least 32 bits under Linux (on some plat-
forms they are 64 bits long). Both 16 bit and 32 bit data and results are passed
as ints in the Linux library - the DLL used a combination of 16 bit ints and

11

pairs of 16 bit ints to pass 16 bit and 32 bit data. Where two 16 bit words are
required (as opposed to one 32 bit word) two 32 bit ints are used - no range
reduction or range error checking is performed. You shouldn’t really notice this
when using the library except when you would normally split a 32 bit argument
in to 2 16 bit ones (just use the single 32 bit one).

5.2.6 Numeric constants

The numeric constants for the various QFL commands have changed - if you
use the symbolic constants this will not affect you - if you are porting code
with contains the numeric constants you will have to update them. The Linux
library uses a completely new technique for implementing these commands this
uses different numeric constants - see chapter 12 for details.

5.2.7 Call by arguments

Several functions now support calling by variable numbers of arguments so that
rather than MoveA, MoveA 12, etc you use pi move abs with one, two three or
four pairs of arguments.

5.2.8 RESET

Calling pi reset board or PI RESET is not required in the linux driver - if you
are porting Windows code that uses these functions consider removing them.
See section 11.4.2 for more details.

12

Chapter 6

Description of software

This software package is constitutes a kernel space device driver and user space
library for controlling Physik Instrumente’s (PI) PCI C843 (and variations) PCI
cards. These card consist of a PCI bridge, a motion control chipset and output
amplifiers for controlling PI’s range of translation stages.
The software comes in two main bits: the driver and the library. The driver
is loaded into the Linux kernel (operating system) and provides a standard
interface (char dev) for the system and user. The driver functionally resides in
a special file (char dev) called /dev/pi stage which is accessed (like a file) to
control the stages.
The library is a suite of user functions which simplify control of the card, motion
control chipset and stages. These functions provide a degree of compatibility
with the PI Windows DLL. It is recommended that the library is used to control
the card etc. rather than raw IO because this insulates the user from potentially
damaging IO errors.

6.1 SMP and non ix86 systems

Linux runs on many different platforms including many different processors and
SMP multiprocessor systems. The kernel is designed with a high degree of
compatibility between different platforms, however minor differences do exist.
The driver should work with SMP systems BUT it has never been tested under
SMP. This means that it has never been compiled for an SMP system and it
has never been installed on an SMP. I do not have access to any SMP build
platforms and I am not likely to get access to SMP systems. The long and short
of it is that installation on SMP systems is not recommended. If you want to
have a go please remember this could deadlock your system if it doesn’t work
(spinlocks are in place and the driver implements single openness so deadlocks
and reentrancy problems should be Ok but they have never been tested).
Non ix86 platforms: the driver should (nearly) work out of the box for other
processor types. Things to look out for are byte ordering conversions (little-

13

endian, big endian problems) and minor initialisation problems. I will be happy
to help debug any of these for you - if they exist it will be due to ignorance and
laziness on my part.

6.2 PCI compliance and hardware limitations

Please note that there are some hardware limitations that are not a function
of the driver. In particular the card is not (quite) PCI compliant because it
does not have a unique vendor / function ID. It looks to the system like a, “Co-
processor: Texas Instruments PCI2040 PCI to DSP Bridge Controller” because
it uses a TI PCI to DSP Bridge and still uses TI’s PCI id.
PCI card are supposed to have unique vendor / function ID numbers - this is
how the computer is supposed to find the card and differentiate it from others.
This was a major advance over the ISA architecture.
Since the card does not have a unique ID it is technically possible to mistake
it for a another device which uses the same ID (ie a TI DSP card). To reduce
the chance of trashing your system the driver probes the motion chipset further
but this is not failsafe: probing may upset a different card using the same PCI
ID (if present) and it only probes 4 bits so there is a 1 in 16 chance that it will
mistakenly identify another card (using the TI ID) as a PI card.
Summary: It is unlikely that you will encounter this problem - if you do contact
PI and ask them to obtain a unique ID, then contact me for a driver update (it
is possible to identify the card by slot location as well).

6.3 Driver limitations

The driver is coded for a single card and single openness.
The driver does not support multiple cards because I only had one card to
develop on. Contact me if you require multicard support, I may develop it if I
have multiple cards to test with. Linux could support multiple cards (if coded)
without the PROM changes required for the windows driver using geographical
addressing.
The driver implements single openness, that is the driver only allows access by
one application at a time. This is encoded as a matter of policy because of
safety concerns.

6.4 Performance

If you were expecting a huge leap in performance from an ISA card system to
the PCI card system forget it. The card uses a PMD navigator motion control
chips set (http://www.pmdcorp.com/) to control the system. This chipset is
the primary performance limiter in the PCI card. Compared with the C842 ISA
card the performance is up 10 times (commands / second) but this is way off
the potential performance gains that migrating from ISA to PCI could give.

14

The card can allow poll based IO or interrupt based IO. This driver uses poll
based IO as the interrupt lag (this appears to be on the card rather than in the
system) costs too much in performance terms. This means that around 20k/s
instructions can be sent to the card but at a cost of 100% CPU usage (waiting
for the motion chipset to be ready after each 16 bit word transfer). Interrupt
driven IO was at least 10× slower because of the lag. I believe that the winNT
driver uses interrupt driven IO but all other windows flavours use poll driven
IO.
The driver implements a 2 stage poll process, it polls quickly (blocking) for a
preset number of times before switching to a slow (non-blocking) number of
times. In normal use it should always complete in the first set, abnormally it
can complete in the second set. If it fails the second set then there is a serious
error and it is possible that the card has crashed, this will cause and exception
and report an error in the kernel logs. In this case you may have to reboot the
system. This has only ever been necessary during testing to set the number of
fast and slow polls for optimum performance. It is possible (but very unlikely)
that on an non-X86 architecture or a future go-faster computer that this number
will have to be revised.
The slow polling method can be reached if the preset number of times is too
low or if your computer is considerably faster than the development one. If you
ever observe the following message, “PI: Warning: Driver error: looped
out - please contact driver author”, in the logs then this is likely to be
the problem. Contact me and I will revise the number of polls.
If you observe the message, “PI: Driver error: fatal: you must reboot
to recover - contact driver author”, then the board has crashed. This
should never happen and it indicates a serious error. Please make a full bug
report.
These messages may be withdrawn in later versions of the code.

6.5 Asynchronous notification of events

The PMD chipset can generate interrupts indicating events occurring on the
axis. The driver can route these to userspace programs using signals, this
involves the scheduler running and means that there is a potential time lag
for notification of the order of 10ms or more. Faster responses are possi-
ble using blocking IO and a custom kernel (with HZ set higher and lock-
breaking patches applied). I will consider these as feature requests if there
is demand, they involve a lot of work but should guarantee sub ms response
for realtime processes. In the meantime I will be polling from user space (upto
20kHz) for time critical measurements. Most of the kernel modifications re-
quired here are expected to be in k2.6 (lock-breaking and HZ are already in 2.5
see http://www.tech9.net/rml/linux/).

15

6.5.1 Ringbuffer overflow

The driver implements a small circular ring buffer to capture events to. If the
events are not read then the buffer will fill up and the head and tail of the buffer
will collide. In this case the driver deletes the oldest entry to make space for
the new. If the buffer is drained correctly then this should never happen in
ordinary use, however, if the events come in a fast burst (before the user code
can empty the buffer) it is possible that the buffer will fill up. In this case the
driver prints the following message in the logs “PI: ring buffer collision”.
If this occurs check your user code to make sure you collect the events you are
registered for or to make sure you haven’t requested events you don’t want. If
you are sure your code is operating correctly then it is possible the buffer is too
small, in this case contact the author to increase the buffer size. The current
buffer size is 32 events.
This feature can involve a huge number of kernel messages and may slow the
system down if events are generated quickly and not collected. It may be with-
drawn or changed in future releases.

16

Chapter 7

Obtaining and installing the
software

Linux drivers are usually supplied as source code which is then compiled on your
system and inserted into the kernel (operating system). Kernels on different
computers vary so you must recompile the code for each computer you use it
on. The software comes with scripts to simplify building and installing the
software. This section covers getting and installing the source code, chapters 8
and 9 cover compiling the driver and library respectively.

7.1 Getting the source code

This is a dummy section, no home has been decided for this software package.
It should be available from PI and EEE, Nottingham.

7.2 Installing the software ready to build

Instructions for build the individual bits of the software are detailed in chapters
8 and 9. This section covers installing the source code ready to build and
installing the system software necessary to build the driver.
The software comes bundled up as a tar.gz package. Save this to a sensible work-
ing directory and unpack the source code (version numbers might be different)
using the tar program (> is the prompt):

> tar -zxvf pi driver v0.52.tar.gz

pi driver/
pi driver/manual.aux
....

This will create a directory pi driver with all the source code in it, it is from
this install directory that all software building is done.

17

It is important that the software is built for the system it is used on. If you
upgrade you system or kernel or rebuild your kernel you must rebuild the driver
and the library. Never be tempted to use or force the use of a mismatching
driver. Never use a mismatching driver and library. Always use the same
compiler for building the kernel and driver.
Using a mismatched kernel and driver could trash your system - you have been
warned.

7.3 Before building....

Before building you may have to install additional system components. In order
to build any of the software you must have the gcc compiler suite installed.
The driver was written using gcc version 3.xx, it should compile with late ver-
sions of gcc 2.xx without problem. The compiler suite is probably available on
your installation as standard, if not consult your system documentation about
installing it or find it at http://www.gnu.org/software/gcc/gcc.html.
You must have the relevant kernel sources installed. These are used by the
driver during compilation. The kernel sources must match the kernel you are
running, if not you will get a version mismatch which will (hopefully) prevent
you from loading the kernel (if not it could trash your system).
The driver is compatible with 2.4.x kernels only, it has not been tested on any
2.5 kernel and is not backwards compatible with 2.2.x.

18

Chapter 8

The kernel driver

8.1 Building the driver

In the directory “driver” in the install directory build the driver using the
make command:

> make

gcc -c -O2 -I /usr/src/linux-2.4/include -D KERNEL -DMODULE
-DSLM DEBUG pi stage.c

The most likely error here is that the compiler cannot find the kernel sources.
The kernel sources are specified in the Makefile by the line

Edit this path to point at your kernel sources
INCLUDES= -I /usr/src/linux-2.4/include

you may need to edit the Makefile to point it to the correct location for your
kernel headers.
Assuming the build process completes (there should be no errors or warnings) it
will create a file pi stage.o, this is a loadable kernel module (the driver) ready
to be inserted into the kernel.

8.2 Installing the driver

Once the build process is complete you are ready to install the kernel driver.
The tools included here only allow for installing the driver and removing the
driver from the system. They do not configure it to be automatically installed
on boot. If you wish to do this consult your local documentation.
To install the driver use the install pi stage script (or make install):

19

> ./install pi stage
Installing device driver
Determining device driver major
Checking the number=254
************** Making Binary device
******************************** Setting permissions
/dev/pi stage ******************************* Installed successfully

You must be logged in as root (superuser) to do this (use ‘su’ to become root).
If the script detects any errors it will abort. If it is successful it will create a file
/dev/pi stage, this is the device driver. It will also create a /proc filesystem
/proc/pi stage. This is a special file which can be read to see the status of
the driver, in version 0.52 this files looks like this:

> cat /proc/pi stage
PI STAGE: PI PCI stage controller driver v0.52 March 2003
(c)mc 2003

Interrupt status
Interrupts rec’d (all) 0
Interrupts rec’d (io) 0
Interrupts rec’d (axis) 0
Interrupts rec’d (board) 0

Profileing info
2-1 0
3-2 0

Last error status:
No errors

Ring buffer status
Async events rec’d 0
Event head 0
Event tail 0
Null proc entry 369

Most of this is debugging information of no relevance to the user, however, it
does ensure that the driver is running in the kernel.
The driver creates kernel messages you can see these in /var/log/messages or
more conveniently by using the dmesg command:

> dmesg
...
...

20

PI PCI stage controller v0.52 March 2003 (c)mc

PI: stage contoller card found- probing for additional info
PI: init modules: interrupt not claimed - in open now
PI: reset performed
PI: Board probed, version 2140, 22
PI: Board has 4 axis capability
PI: init module: device major=254
PI: init module: installing /proc
PI: installation complete
PI: enabling board

If things go wrong valuable debugging information will go here.

8.3 Removing the driver

The driver will be automatically remove on shutdown or reboot. To remove it
before hand use the remove pi stage script:

> ./remove pi stage

This removes the driver and the files /dev/pi stage and /proc/pi stage.

8.4 Installing and removing while preserving the
stage position

Please refer to section 10.2 for information on how to install and remove the
driver while preserving the stage positions by saving the position to disk.

21

Chapter 9

The userspace library

9.1 Building the library

In the directory “library” in the install directory build the library using the
make command:

> make
g++ -c pi user.cc
ar crv libpi user.a pi user.o
a - pi user.o
g++ -O2 -Wall -c -o motion control.o motion control.cc
g++ motion control.o -o motion control -lpi user -lncurses
-L .

This builds the library libpi user.a. 1

9.2 Installing the library and header files

You can install the library and header files in /usr/local/lib and /usr/local/include
using the make install command:

make install
cp libpi user.a /usr/local/lib
cp pi user.h /usr/local/include

You will need to be logged in as root to do this.
1Note: Building the library requires the pi driver.h header from the driver sources and

expects to find it in “../driver”, if you relocate the library source code or change the install
process this will break the make process if this header can’t be found in the usual place.

22

The compiler should pick these files up in these locations, however, if it doesn’t
you may have to relocate these files or point the compiler to them using the -I
and -L flags, see your local documentation.

9.3 Compiling user programs with the library

To use the library you must include the header pi stage.h in your source code
and link to the library at compile time. Add the following line to you source
code:

#include <pi user.h>

Compile your program (mycode.cc) linking to the library thus:

> g++ mycode.cc -lpi user

9.4 Porting windows code

The user library and kernel driver provide a fully featured interface for con-
trolling PI stages via the C843 card. Differences between the DLL and Linux
library exist because of function differences between the two systems and be-
cause of style differences between Windows and Unix programming (Windows
code looks ugly). The library is written for Unix programmers but nonetheless
provides a high degree of functional compatibility with the Windows DLL.

9.4.1 Comparison with the PI windows DLL

All function and variable names in the Linux library are prefixed with pi or
PI to reduce namespace pollution2.
Most of the windows DLL functions return HRESULT, this is meaningless in Linux
so functions either return void or something useful. This means that the argu-
ments are often changed between windows DLL and Linux library counterparts.
Details can be found in chapter 11.
Some of the functions have no meaning in the Linux driver and are not supported
(for instance SelectBoard(), the Linux driver only supports one board and
would implement multiboard access differently anyway).
Currently command parsing functions (for instance translate) are not sup-
ported. These do not offer any additional functionality and are inefficient in
comparison with the pi setQMC() interface. This should not present a signifi-
cant problem for converting programs from windows to Linux.

2For instance one of my applications uses 5 different hardware control systems, each one
has a function init board() prefixing with a unique identifier aids program development

23

Chapter 10

Utility / Example programs

The software also includes a utility /example program which demonstrates the
use of the library. This isn’t the greatest bit of software and if has grown rather
inelegantly from simple test program to its present form.

10.1 motion control

This is automatically built when the library is built.
It is an interactive terminal based program which controls up to four axis. The
program is run from the command line thus:

> ./motion control

If it cannot contact the device driver (because it is not installed) you will get
this message: (install the driver before using).

Matt’s PI stage demo 0.32 13 Feb 2003
About to auto init everything and switch to screen mode

Opening the board
Failed (is the device driver installed?)
Press any key to quit

Assuming that the driver is Ok you will see the follow instruction screen:

Matt’s PI stage demo 0.32 13 Feb 2003
About to auto init everything and switch to screen mode

Opening the board Ok
The number of axis supported 4
Axis 0: sense 0 Axis 1: sense 0 Axis 2: sense 1 Axis 3: sense 1

Commands:
To set axis type a# where # is the axis number

24

To move abs type m#####<enter> where ##### is the position
To move rel type s#####<enter> where ##### is the shift
To set velocity v#####<enter> where ##### is counts/cycle
To move off limits r
To set motor Output o
To enable brakes b
To set motor PWM p
To set motor DAC d
To clear errors e
To quit type q

Press any key to continue

After this you will see the working screen:

Axis 0 Axis 1 Axis 2 Axis 3
Lim OK Lim OK Lim OK Lim OK
V=50000 V=50000 V=50000 V=50000
V=0 V=0 V=0 V=0
P=0 P=0 P=0 P=0
E=0 E=0 E=0 E=0
BRK=1 BRK=1 BRK=1 BRK=1
AMP=1 AMP=1 AMP=1 AMP=1
MTR=1 MTR=1 MTR=1 MTR=1
ENC=0 ENC=0 ENC=0 ENC=0
AB=10 AB=11 AB=00 AB=11
Analog Analog Analog Analog
M 300 M 1300 M 2300 M 3300
Ok Ok Ok Ok

O O O O

Command Axis 0

where V(1) is the commanded velocity, V(2) is the actual velocity (counts /
second extracted from counts / cycle hence the low resolution), P is the position
(counts), E is the position error, BRK is the analogue output to the brakes, AMP
is the analogue output to the amplifiers, MTR is the motor enable signal, ENC
is the encoder source signal, AB is the encoder status, Analog / PWM+/- is
the output mode from the chipset (analog or PWM) and M is the event status
(hex).
The status of each axis is updated continuously. If the limit switches are acti-
vated the motor will be disabled and Lim OK will change to On +ve or On -ve,

25

use the ‘r’ command to move off the limit switches.
Asynchronous events are captured and display above the command line. The
program is set up to capture “motion complete” interrupts.

10.2 Saving and recalling the origin

As long as the driver is loaded the position of the stages is remembered by
the chipset in the card so that subsequent programs will see the same origin.
However, once the driver has been unloaded the card is stateless and the origin
will probably be lost. This will also occur when a machine is rebooted.
Two utility functions pi save pos and pi recall pos are included which will
save the current position to disk and recall it again. These utilities are built
automatically with the user library and installed by default in /usr/local/bin.
They save the position to a file in /etc/pi stages.
Assuming the stages are not moved (by hand or by an other driver such as
the windows driver) saving the position before unloading the driver and then
recalling it after loading but before use should statefully restore the position.
Two scripts are included that preserve the last known position of the stages
between driver loads and unloads these are: install pi stage recall and
remove pi stage save. They can be found with the install pi stage and
remove pi stage scripts (note: the save and recall scripts use these scripts and
must be in the same directory as them to work). These scripts can only be used
once the user library has been compiled and installed.
These are designed to be a sensible way of preserving the reference position
between machine reboots, obviously they cannot work if the stages have been
moved while the driver has been unloaded.
Expect small drifts in position while the stages are turned off and expect vertical
stages to have shifted due to gravity.

Note:

The directory /etc/pi stage will have the default permissions for root. This
should allow root to read and write files here but no one else. This is usually
fine as you have to be root (superuser) to install or remove the driver. If you
wish to use pi save pos and pi recall pos without being root you will have
to change the permissions of this directory (and possibly the files within it).

Caution!

Watch out for error messages. If any errors are reported then it is possible that
the origin has not been recalled successfully and the stages may move in an
unpredictable if you then rely on the origin being correct.
The format of the file may change between releases so you cannot rely on this
feature to work during the transition between different versions of the software
(although it probably will).

26

Chapter 11

Library reference

11.1 Windows DLL to Linux library conversion

27

Windows DLL function Linux libpi user function
autodetect int pi auto set limit(PI AXIS);
AutoFindEdge void pi find home(PI AXIS);
Axis Installed int pi axis installed(void);
get activity status int pi get activity status(PI AXIS);
get event status int pi get event status(PI AXIS);
get signal status int pi get signal status(PI AXIS);
get pos int pi get pos(PI AXIS);
get pos4 void pi get pos4(int *);
getQMC int pi getQMC(int, PI AXIS);
getQMCA int pi getQMC(int, PI AXIS, int);

int pi getQMCA(int, PI AXIS, int);
get RefSignal not supported in this version
get v int pi get v(PI AXIS); (deprecated)

int pi get vel cps(PI AXIS); (preferred)
InitBoard BOOL pi init board(void) (called by pi openboard)
Init LS void pi init ls(PI AXIS, int);
InitAxis BOOL pi init axis(PI AXIS);
MoveA void pi move abs(PI AXIS, int);
MoveA 12 void pi move abs(PI AXIS, int, PI AXIS, int);
MoveA 123 void pi move abs(PI AXIS, int, ...);
Also MoveA 1234 void pi move abs(PI AXIS, int, ...);
MoveR void pi move rel(PI AXIS, int);
MoveR 12 void pi move rel(PI AXIS, int, PI AXIS, int);
MoveR 123 void pi move rel(PI AXIS, int, ...);
Also MoveR 1234 void pi move rel(PI AXIS, int, ...);
moving BOOL pi moving(PI AXIS);
OpenBoard BOOL pi openboard(void); // use this one

BOOL pi openboard(char *);
BOOL pi closeboard(void);

SelectBoard not supported
setQMC void pi setQMC(int, PI AXIS, int);
setQMCA void pi setQMC(int, PI AXIS, int, int);

void pi setQMCA(int, PI AXIS, int, int);
VectorA void pi vector abs(PI AXIS, int, PI AXIS, int, int);
VectorB void pi vector rel(PI AXIS, int, PI AXIS, int, int);
WaitStop pi wait stop(PI AXIS axis);
execute pi execute
execute2 pi execute
GeneralCommandParser not supported
translate not supported
translate error not supported

28

Additional functions Description
pi get limit status(PI AXIS) returns the limit status for the axis
pi get vel cps(PI AXIS) returns the velocity in ∼ counts per second
pi set vel cps(PI AXIS) returns the velocity in ∼ counts per second
pi stop dead(PI AXIS) stops the axis by target pos to actual pos
pi stop dead(void) stops all axis
pi set pos(PI AXIS, int pos) Calls PI SET ACTUAL POSITION

rewrites the reference position

11.2 Function library

11.2.1 IO primitives

These functions are not intended for user use. They are IO primitives intended
to simplify the library and improve readability. Please don’t use these func-
tions, they are not safe for user code and reserved for future changes. They are
documented here for completeness only.
inline int pi io c(PI CMD ONLY);
inline int pi io cw(PI CMD WRITE1, PI DATA);
inline int pi io cww(PI CMD WRITE2, PI DATA, PI DATA);
inline int pi io cwww(PI CMD WRITE3, PI DATA, PI DATA, PI DATA);
inline int pi io cr(PI CMD READ1, PI DATA *);
inline int pi io crr(PI CMD READ2, PI DATA *);
inline int pi io cwr(PI CMD WRITE READ1, PI DATA, PI DATA *);
inline int pi io cwrr(PI CMD WRITE READ2, PI DATA, PI DATA *);

11.3 IO user functions

These are the main bank of functions for user IO, in all cases the first argument
is the command, the second the axis and subsequent ones the arguments which
are all 32 bit signed integers (ints). They are the preferred way of performing
low level IO and considered safe.
Most users will probably use these functions sparingly, preferring to use the
functions in the following sections.
The functions pi getQMCA and pi setQMCA are identical to their non ‘A’ coun-
terparts and provide for compatibility with the DLL.
int pi getQMC(int, PI AXIS);
int pi getQMC(int, PI AXIS, int);
int pi getQMCA(int, PI AXIS, int);
void pi setQMC(int, PI AXIS, int);
void pi setQMC(int, PI AXIS, int, int);
void pi setQMCA(int, PI AXIS, int, int);

The following commands are defined for this library:

29

// send a command with no data IO
#define PI_CLEAR_INTERRUPT (PI_CMD_ONLY)0xac
#define PI_NO_OPERATION (PI_CMD_ONLY)0x00
#define PI_RESET (PI_CMD_ONLY)0x39
#define PI_UPDATE (PI_CMD_ONLY)0x1a
// commands that get something but require an argument
#define PI_READ_ANALOG (PI_CMD_WRITE_READ1)0xef
#define PI_READ_BUFFER (PI_CMD_WRITE_READ2)0xc9
#define PI_READ_IO (PI_CMD_WRITE_READ1)0x83
#define PI_GET_TRACE_VARIABLE (PI_CMD_WRITE_READ1)0xb7
#define PI_GET_BREAKPOINT (PI_CMD_WRITE_READ1)0xd5
#define PI_GET_BREAKPOINT_VALUE (PI_CMD_WRITE_READ2)0xd7
#define PI_GET_BUFFER_FUNCTION (PI_CMD_WRITE_READ1)0xcb
#define PI_GET_BUFFER_LENGTH (PI_CMD_WRITE_READ2)0xc3
#define PI_GET_BUFFER_READ_INDEX (PI_CMD_WRITE_READ2)0xc7
#define PI_GET_BUFFER_START (PI_CMD_WRITE_READ2)0xc1
#define PI_GET_BUFFER_WRITE_INDEX (PI_CMD_WRITE_READ2)0xc5

// commands that get something
#define PI_GET_ACCELERATION (PI_CMD_READ2)0x4c
#define PI_GET_ACTIVITY_STATUS (PI_CMD_READ1)0xa6
#define PI_GET_ACTUAL_POSITION (PI_CMD_READ2)0x37
#define PI_GET_ACTUAL_VELOCITY (PI_CMD_READ2)0xad
#define PI_GET_AUTO_STOP_MODE (PI_CMD_READ1)0xd3
#define PI_GET_AXIS_MODE (PI_CMD_READ1)0x88
#define PI_GET_AXIS_OUT_SOURCE (PI_CMD_READ1)0xee
#define PI_GET_CAPTURE_SOURCE (PI_CMD_READ2)0xd9
#define PI_GET_CAPTURE_VALUE (PI_CMD_READ2)0x36
#define PI_GET_CHECKSUM (PI_CMD_READ2)0xf8
#define PI_GET_COMMANDED_ACCELERATION (PI_CMD_READ2)0xa7
#define PI_GET_COMMANDED_POSITION (PI_CMD_READ2)0x1d
#define PI_GET_COMMANDED_VELOCITY (PI_CMD_READ2)0x1e
#define PI_GET_CURRENT_MOTOR_COMMAND (PI_CMD_READ1)0x3a
#define PI_GET_DECELERATION (PI_CMD_READ2)0x92
#define PI_GET_DERIVATIVE (PI_CMD_READ1)0x9b
#define PI_GET_DERIVATIVE_TIME (PI_CMD_READ1)0x9d
#define PI_GET_DIAGNOSTIC_PORT_MODE (PI_CMD_READ1)0x8a
#define PI_GET_ENCODER_MODULUS (PI_CMD_READ1)0x8d
#define PI_GET_ENCODER_SOURCE (PI_CMD_READ1)0xdb
#define PI_GET_EVENT_STATUS (PI_CMD_READ1)0x31
#define PI_GET_GEAR_MASTER (PI_CMD_READ1)0xaf
#define PI_GET_GEAR_RATIO (PI_CMD_READ2)0x59
#define PI_GET_HOST_IO_ERROR (PI_CMD_READ1)0xa5
#define PI_GET_INTEGRAL (PI_CMD_READ2)0x9a
#define PI_GET_INTEGRATION_LIMIT (PI_CMD_READ2)0x96
#define PI_GET_INTERRUPT_AXIS (PI_CMD_READ1)0xe1

30

#define PI_GET_INTERRUPT_MASK (PI_CMD_READ1)0x56
#define PI_GET_JERK (PI_CMD_READ2)0x58
#define PI_GET_KAFF (PI_CMD_READ1)0x94
#define PI_GET_KD (PI_CMD_READ1)0x52
#define PI_GET_KI (PI_CMD_READ1)0x51
#define PI_GET_KOUT (PI_CMD_READ1)0x9f
#define PI_GET_KP (PI_CMD_READ1)0x50
#define PI_GET_KVFF (PI_CMD_READ1)0x54
#define PI_GET_LIMIT_SWITCH_MODE (PI_CMD_READ1)0x81
#define PI_GET_MOTION_COMPLETE_MODE (PI_CMD_READ1)0xec
#define PI_GET_MOTOR_BIAS (PI_CMD_READ1)0x2d
#define PI_GET_MOTOR_COMMAND (PI_CMD_READ1)0x69
#define PI_GET_MOTOR_LIMIT (PI_CMD_READ1)0x07
#define PI_GET_MOTOR_MODE (PI_CMD_READ1)0xdd
#define PI_GET_OUTPUT_MODE (PI_CMD_READ1)0x6e
#define PI_GET_POSITION (PI_CMD_READ2)0x4a
#define PI_GET_POSITION_ERROR (PI_CMD_READ2)0x99
#define PI_GET_POSITION_ERROR_LIMIT (PI_CMD_READ2)0x98
#define PI_GET_PROFILE_MODE (PI_CMD_READ2)0xa1
#define PI_GET_SAMPLE_TIME (PI_CMD_READ1)0x61
#define PI_GET_SERIAL_PORT_MODE (PI_CMD_READ1)0x8c
#define PI_GET_SETTLE_TIME (PI_CMD_READ1)0xab
#define PI_GET_SETTLE_WINDOW (PI_CMD_READ1)0xbd
#define PI_GET_SIGNAL_SENSE (PI_CMD_READ1)0xa3
#define PI_GET_SIGNAL_STATUS (PI_CMD_READ1)0xa4
#define PI_GET_STOP_MODE (PI_CMD_READ1)0xd1
#define PI_GET_TIME (PI_CMD_READ2)0x3e
#define PI_GET_TRACE_COUNT (PI_CMD_READ2)0xbb
#define PI_GET_TRACE_MODE (PI_CMD_READ1)0xb1
#define PI_GET_TRACE_PERIOD (PI_CMD_READ1)0xb9
#define PI_GET_TRACE_START (PI_CMD_READ1)0xb3
#define PI_GET_TRACE_STATUS (PI_CMD_READ1)0xba
#define PI_GET_TRACE_STOP (PI_CMD_READ1)0xb5
#define PI_GET_TRACKING_WINDOW (PI_CMD_READ1)0xa9
#define PI_GET_VELOCITY (PI_CMD_READ2)0x4b
#define PI_GET_VERSION (PI_CMD_READ2)0x8f

// commands that set something
#define PI_ADJUST_ACTUAL_POSITION (PI_CMD_WRITE2)0xf5
#define PI_CLEAR_POSITION_ERROR (PI_CMD_WRITE1)0x47
#define PI_MULTI_UPDATE (PI_CMD_WRITE1)0x5b
#define PI_RESET_EVENT_STATUS (PI_CMD_WRITE1)0x34
#define PI_SET_ACCELERATION (PI_CMD_WRITE2)0x90
#define PI_SET_ACTUAL_POSITION (PI_CMD_WRITE2)0x4d
#define PI_SET_AUTO_STOP_MODE (PI_CMD_WRITE1)0xd2
#define PI_SET_AXIS_MODE (PI_CMD_WRITE1)0x87

31

#define PI_SET_AXIS_OUT_SOURCE (PI_CMD_WRITE1)0xed
#define PI_SET_BREAKPOINT (PI_CMD_WRITE1)0xd4
#define PI_SET_BREAKPOINT_VALUE (PI_CMD_WRITE3)0xd6
#define PI_SET_BUFFER_FUNCTION (PI_CMD_WRITE2)0xca
#define PI_SET_BUFFER_LENGTH (PI_CMD_WRITE3)0xc2
#define PI_SET_BUFFER_READ_INDEX (PI_CMD_WRITE3)0xc6
#define PI_SET_BUFFER_START (PI_CMD_WRITE3)0xc0
#define PI_SET_BUFFER_WRITE_INDEX (PI_CMD_WRITE3)0xc4
#define PI_SET_CAPTURE_SOURCE (PI_CMD_WRITE1)0xd8
#define PI_SET_DECELERATION (PI_CMD_WRITE2)0x91
#define PI_SET_DERIVATIVE_TIME (PI_CMD_WRITE1)0x9c
#define PI_SET_DIAGNOSTIC_PORT_MODE (PI_CMD_WRITE1)0x89
#define PI_SET_ENCODER_MODULUS (PI_CMD_WRITE1)0x8e
#define PI_SET_ENCODER_SOURCE (PI_CMD_WRITE1)0xda
#define PI_SET_GEAR_MASTER (PI_CMD_WRITE1)0xae
#define PI_SET_GEAR_RATIO (PI_CMD_WRITE2)0x14
#define PI_SET_INTEGRATION_LIMIT (PI_CMD_WRITE2)0x95
#define PI_SET_INTERRUPT_MASK (PI_CMD_WRITE1)0x2f
#define PI_SET_JERK (PI_CMD_WRITE2)0x13
#define PI_SET_KAFF (PI_CMD_WRITE1)0x93
#define PI_SET_KD (PI_CMD_WRITE1)0x27
#define PI_SET_KI (PI_CMD_WRITE1)0x26
#define PI_SET_KOUT (PI_CMD_WRITE1)0x9e
#define PI_SET_KP (PI_CMD_WRITE1)0x25
#define PI_SET_KVFF (PI_CMD_WRITE1)0x2b
#define PI_SET_LIMIT_SWITCH_MODE (PI_CMD_WRITE1)0x80
#define PI_SET_MOTION_COMPLETE_MODE (PI_CMD_WRITE1)0xeb
#define PI_SET_MOTOR_BIAS (PI_CMD_WRITE1)0x0f
#define PI_SET_MOTOR_COMMAND (PI_CMD_WRITE1)0x77
#define PI_SET_MOTOR_LIMIT (PI_CMD_WRITE1)0x06
#define PI_SET_MOTOR_MODE (PI_CMD_WRITE1)0xdc
#define PI_SET_OUTPUT_MODE (PI_CMD_WRITE1)0xe0
#define PI_SET_POSITION (PI_CMD_WRITE2)0x10
#define PI_SET_POSITION_ERROR_LIMIT (PI_CMD_WRITE2)0x97
#define PI_SET_PROFILE_MODE (PI_CMD_WRITE1)0xa0
#define PI_SET_SAMPLE_TIME (PI_CMD_WRITE1)0x38
#define PI_SET_SERIAL_PORT_MODE (PI_CMD_WRITE1)0x8b
#define PI_SET_SETTLE_TIME (PI_CMD_WRITE1)0xaa
#define PI_SET_SETTLE_WINDOW (PI_CMD_WRITE1)0xbc
#define PI_SET_SIGNAL_SENSE (PI_CMD_WRITE1)0xa2
#define PI_SET_STOP_MODE (PI_CMD_WRITE1)0xd0
#define PI_SET_TRACE_MODE (PI_CMD_WRITE1)0xb0
#define PI_SET_TRACE_PERIOD (PI_CMD_WRITE1)0xb8
#define PI_SET_TRACE_START (PI_CMD_WRITE1)0xb2
#define PI_SET_TRACE_STOP (PI_CMD_WRITE1)0xb4
#define PI_SET_TRACE_VARIABLE (PI_CMD_WRITE2)0xb6

32

#define PI_SET_TRACKING_WINDOW (PI_CMD_WRITE1)0xa8
#define PI_SET_VELOCITY (PI_CMD_WRITE2)0x11
#define PI_WRITE_BUFFER (PI_CMD_WRITE3)0xc8
#define PI_WRITE_IO (PI_CMD_WRITE2)0x82

The types PI CMD ONLY, PI CMD WRITE READ1, PI CMD WRITE READ2, PI CMD READ1,
PI CMD READ2, PI CMD WRITE1, PI CMD WRITE2 and PI CMD WRITE3 are all int
and are used in this way as an aid memoir.

11.4 Utility Functions

11.4.1 Opening and initialising the board

Opening the board

The open board function comes in two version. Usually you will use the one with
no argument, however, if you wish to access the device driver through another
name (other than /dev/pi stage) you may use the second version and specify
the location of the device driver.
BOOL pi openboard(void);
BOOL pi openboard(char *);
Return value: TRUE on success, FALSE of failure.
Before any access to the board it must be opened using pi openboard – failure
to do this will (probably) result in a segmentation fault.
This function also initialises the board and resets it to default values by calling
pi init board();.
pi openboard can be called many times - if the board is open then it returns
TRUE, if it is not open it attempts to open it, if it is successful it returns TRUE
otherwise it returns FALSE.

11.4.2 Note on pi reset board(); and PI RESET

As of revision 0.60 this function no longer calls pi reset board();. This is
thought to be unnecessary The pi reset board(); is a special function that is
executed by the kernel driver and should only need to be called at the installation
of the driver (or if the card crashes but this should never happen). It has been re-
moved so that the save and recall origin functions can work (pi reset board();
sets the origin to 0 so that if it is in the call to pi init board(); the origin
cannot be statefully remembered by the card between opens).
This is experimental but not thought to have any consequences. As far as the
user is concerned all it means is that in the event of a card crash (which never
occurs) pi reset board() will need to be call explicitly whereas prior to version
0.60 just reopening the board would reset the card.
Calling PI RESET through pi setQMC or pi execute just calls pi reset board();.

33

Closing the board

BOOL pi closeboard(void);
Return value: TRUE on success, FALSE of failure.
This can be called many times, if the board is open it closes it and returns TRUE
otherwise it just returns TRUE. No errors are trapped so it always returns TRUE.

Initialising the board

The board is automatically initialised when opened, no further action is needed.
For documentation purposes pi openboard(); calls:
BOOL pi init board(void);
but you don’t have to.
See section 11.4.2 to learn about pi reset board(); which is no longer called
since version 0.60.

11.4.3 Automatically configuring the axis

As of version 0.63 an autoconfig utility is included in the linux driver. As far
as I know there is not the equivalent in the Windows software. The autoconfig
system should be simple to use provided your stage(s) are in the database. If
you stages are not present in the database then consult your documentation and
create a database file for you stages. This is very simple - please submit your
new database file to me for inclusion in the next driver version.

What is configured

The following stage parameters are automatically configured: PID filter terms
(p, i, d, i-limit, vff), acceleration, velocity, motor output mode, limit switch
mode and encoder resolution.
Limit switches currently not configured!

Autoconfig

To simply auto configure your stage use int pi auto stage(int axis, char
*name), for instance to set up an “M-605.1.DD” on axis 1 use: pi auto stage(1,
"m-605.1.dd"). Note: the stage name will be converted to lower case if you use
upper case. The function searches for a stage database file named m-605.1.dd
in the stage database directory (currently /etc/pi stage/stage database/)
and reads the parameters from it.
Return value: If it finds the file and reads it ok pi auto stage sets the param-
eters and returns PI OK. If there is an error it will return PI NO STAGE FILE,
PI CANT READ STAGE FILE, PI CANT OPEN STAGE FILE or PI AUTO STAGE ERROR
(file format incorrect).

34

Internals

Internally pi auto stage uses pi auto read db to read the files into a pi stage
structure and then uses pi auto set stage to set up the stages from the data
in the pi stage structure. These will not be documented here but they can be
used to code your own database or to use databases kept outside of the default
location.. Please refer to the source code in pi user.cc for further information.

Database format

The stage database format is very simple, if you are writing a database file for
a new stage please copy one of the existing files for use as a template. If you
are coding for a PI stage then all the information you require is (usually) in the
manual that accompanies the stage.
If you write a new database file please submit it to me for inclusion into the
next version of the library.
Please note that all arguments are converted into lower case - this includes the
filename. This means that you cannot use upper case characters in the
filenames.

Finding out what stages are supported

Each supported stage has its own file entry in the database directory, you can
find out which stages are supported by listing the contents of /etc/pi stage/stage database.

11.4.4 Setting / getting the stage resolution

If you wish to use the um versions of the functions in this library then the
resolution of the stage must be set. If you use the automatic configuration
than this is done automatically (see section 11.4.3). Otherwise you use these
functions.
pi set cpm(PI AXIS axis, float cpm) sets the encoder counts per micron
value for the specified axis. This must be called before any of the functions that
use units of microns are called. It is automatically called be pi auto stage.
pi get cpm(PI AXIS axis) returns the current counts per micron

11.4.5 pi get cpm(PI AXIS axis, float cpm)

value used by the library. If it hasn’t been set then it returns 0.

11.4.6 Initialising Axis and limit switches

Getting the number of axis supported

To determine the number of axis supported use:
int pi axis installed(void);
Return value: the number of axis supported.

35

To initialise the axis use:
BOOL pi init axis(PI AXIS);
This must be done before using the axis and is not done automatically.

Setting the limit switch sense

To set the limit switch sense automagically use:
int pi auto set limit(PI AXIS);
Return value: the limit switch sense (PI LIMIT ZERO or PI LIMIT ONE) on suc-
cess or PI LIMIT FAIL on failure.
This function relies on the fact that both limit switches cannot be activated at
the same time so it is safe to guess the sense and test it provided both read
the same, if the limit switches disagree then one of them must be activated
and the sense cannot be automatically determined. If you have a new type of
stage where both switches can be activated at the same time then this function
is unsafe. You can use this function to determine the usual state of the limit
switches.
You will need to know what sense the limit switches are in the unfortunate
event that you are on the limit switches when initialising. Without knowing the
correct sense you can not move the stages safely and the automatic limit switch
recover function may mistake the +ve limit for the -ve one and move the wrong
way.
void pi set limit(PI AXIS,int);
is the manual version of the limit switch sensing function, the second argument
is either (PI LIMIT ZERO orPI LIMIT ONE).

Enabling or disabling the limit switches

void pi init ls(PI AXIS ,int);
this function can enable or disable limit switch sensing. If you have no limit
switches (say it is a circular stage) use it to turn limit switching off. Usually
you do not need to turn it on, this is done automatically by pi openboard();
via pi init board();. It takes PI LIMIT ON and PI LIMIT OFF.

Moving off of the limit switches

void pi move off limit switch(PI AXIS);
If the limit switch sense is correct this function will always move away from the
activate switch. As of version 0.52 this function should move as far as required
to get of the limit switch with only one call.

11.4.7 Finding the home position

With suitably equipped stages there is an encoder signal that can be used to
define a “home” position roughly at the centre of the stages. The behaviour of
this function is untested with stages that lack this functionality (by design the

36

stages will move to seek this signal but will move in a random direction until
they encounter a limit switch).
void pi find home (PI AXIS);
This finds the home (centre) position for the axis provided it is equipped with
the ENCODER INDEX signal. It will find the transition edge of this signal always
moving in a +ve direction. Under tests this edge was found with a repeatability
within ±2µm.
Warning This function has been tested with a PI stage M511.DD only. You
are advised to examine the performance of this function with other stages under
test conditions prior to use.
Warning The axis will move under its own control while this function is being
used - you must take care to make sure it will not cause damage while seeking
its home position.
Warning If the stage is not equipped with the ENCODER INDEX signal it may
move in a random direction until it hits a limit switch.
Warning The stage moves with the predetermined velocity - this function does
not return until the home has been found - if the velocity is very low or 0 then
it will take a long time (or never return). Set the velocity before calling it. A
velocity of 0 is set following a motion error! This is a true of version 0.52 and
may be changed in following versions.

11.4.8 Controlling the analogue motor and brake ampli-
fiers

void pi set motor(PI AXIS ,int);
void pi set brake(PI AXIS ,int);

They take PI MOTOR ON, PI MOTOR OFF, PI BRAKE ON and PI BRAKE OFF as argu-
ments. They can also control all axis at once using PI MOTORS ON, PI MOTORS OFF,
PI BRAKES ON and PI BRAKES OFF as arguments (in this case the axis argument
is ignored).
The motor and brake status can be inspected using:
int pi motor and brake status(void);
Return value: bit field indicating the status of the motor and brakes.
int pi get motor(PI AXIS);
Return value: PI MOTOR ON or PI MOTOR OFF
int pi get brake(PI AXIS);
Return value: PI BRAKE ON or PI BRAKE OFF

Waiting for axis to stop moving

To wait for the axes to stop moving you can use: void pi wait stop(PI AXIS);
This polls the card every 50ms and returns when the axis has stopped moving.
For higher timing resolution poll pi moving().

37

11.4.9 Reading and writing the digital IOs

PI maps port 0 (zero) of the PMD motion chipset IO space to a digital output
and a digital input. Reading this port returns the 8 bit value of the input,
writing this port sets the output. Since the IO space is 16 bits and the IOs are
8 bit the top 8 bits are ignored.
The following functions are recommended for controlling the digital IOs that
PI offers on their board. They offer stateful control (you can control each line
independently without prior knowledge of the setting), however the output state
is currently set to 0x00 when the library is initialised (this should be statefully
handled in the kernel driver rather than the library so that settings are preserved
- I will consider coding this as a feature request if asked, otherwise you will have
to wait for me to get around to it).

// functions to handle the DIO
// turn a DO line on
void pi_DO_up(unsigned char bit);
// turn a DO line off
void pi_DO_down(unsigned char output);
// set the output port to a particular value
void pi_DO_set(unsigned char data);
// convert from bit line to hex
unsigned char pi_n2b(int n);
// read the input port
int pi_get_DI();

Individual output bits can be set with void pi DO up(unsigned char bit);
and void pi DO down(unsigned char output);. The utility function pi n2b();
is provided to convert from bit position to binary, hence to turn the third IO line
on you can use either pi DO up(0x04) or pi DO up(pi n2b(3));. The whole
output byte can be set with pi DO set();. To read the digital input you can
use pi get DI();.
Please note that of version 0.50 May 2003 none of these functions has been
tested and validated (just coded).

11.4.10 Stopping the stages quickly

pi stop dead(PI AXIS) stops the axis by setting the target position to the
current position. This is usually a safe way to abort any movement. Calling this
function without and argument stops all the axis installed. This was introduced
in version 0.54 and is untested.

11.4.11 Setting the home or reference position

void pi set pos(PI AXIS, int pos);
Calls PI SET ACTUAL POSITION which shifts the reference position so that the
current report position reads pos. This should only be called when the stage is

38

stationary as it may halt any movement. See the PMD programmers reference
for an explanation of this (if you want).
This is useful for setting the home position of the stages. It is used with
pi get pos() in the utility programs pi save pos and pi recall pos.
void pi set pos um(PI AXIS, float microns);
Sets the position in microns.

11.5 Functions which move the axis

Two sets of functions are defined, the first set moves the stages in units of
microns provided the encoder units are set (the encoder units are set by default
to 0) and the second set the movements are in encoder units.
These functions command the axis to move either to absolute positions (abs
versions) (relative to the encoder origin (which is zero on reset)) or relative
positions (to the current location) (rel versions).
They are provided in 4 versions which start 1-4 axis simultaneously.

Move in microns

These functions take a floating point argument (which is converted to encoder
units before calling the raw version below). Sub-micon movements (if possible)
can be achieved with fraction arguments. All conversions are rounded towards
0 to the nearest encoder whole encoder unit.
These function will only work correctly if the encoder counts per micron is
correctly set for the stage (see sections 11.4.3 and 11.4.4).
void pi move abs um(PI AXIS, float);
void pi move abs um(PI AXIS, float, PI AXIS, float);
void pi move abs um(PI AXIS, float, PI AXIS, float, PI AXIS, float);
void pi move abs um(PI AXIS, float, PI AXIS, float, PI AXIS, float, PI AXIS,
float);
void pi move rel um(PI AXIS, float position);
void pi move rel um(PI AXIS, float, PI AXIS, float);
void pi move rel um(PI AXIS, float, PI AXIS, float, PI AXIS, float);
void pi move rel um(PI AXIS, float, PI AXIS, float, PI AXIS, float, PI AXIS,
float);

Move in encoder units

These functions take encoder units as integers.
void pi move abs(PI AXIS, int);
void pi move abs(PI AXIS, int, PI AXIS, int);
void pi move abs(PI AXIS, int, PI AXIS, int, PI AXIS, int);
void pi move abs(PI AXIS, int, PI AXIS, int, PI AXIS, int, PI AXIS, int);
void pi move rel(PI AXIS, int position);
void pi move rel(PI AXIS, int, PI AXIS, int);

39

void pi move rel(PI AXIS, int, PI AXIS, int, PI AXIS, int);
void pi move rel(PI AXIS, int, PI AXIS, int, PI AXIS, int, PI AXIS, int);

11.5.1 Vector movement

void pi vector abs(PI AXIS axis1, int p1, PI AXIS axis2, int p2, int
velocity);
void pi vector rel(PI AXIS axis1, int p1, PI AXIS axis2, int p2, int
velocity);

These functions move two stages along a vector, they are supplied to emulate
VectorA(...) and VectorB(...) in the Windows DLL. They should provide
fairly good emulation with the following restriction: they do not restore the
velocity of the stages after use, they return immediately after setting the stages
in motion.

Beware!

The velocity is in raw chipset units of counts per cycle. Please note that this
may change in future releases.

Take care!

You should also be aware that these functions, like their Windows counterparts,
are very simple. They merely calculate the target velocity for each stage based
on the velocity requested and the length of movement. The function then set the
stage velocities and call pi move rel(PI AXIS, int, PI AXIS, int); (with
the distances adjusted in the case of pi vector abs).
Thus the assumption is that both stages are identical and that the stage con-
troller is set to give identical velocity profiles. If either of these assumptions
are not correct then the movement may not follow a straight line. In fact the
movement is not guaranteed to follow a straight line in any event. In practical
use (with unloaded stages) it seems to work fairly well.

11.6 Functions which get information from the
card

11.6.1 Determine if the axis is moving

BOOL pi moving(PI AXIS);
Return value: TRUE if moving, FALSE if stationary.

40

11.6.2 Finding the position of the stage

int pi get pos(PI AXIS);
int pi get pos err(PI AXIS);
void pi get pos4(int *);
Return value: position (or position error) of the axis in encoder units.
From version 0.7 the following are also defined:
int pi get pos um(PI AXIS);
int pi get pos err um(PI AXIS);
void pi get pos4 um(int *);
Return value: position (or position error) of the axis in microns.
pos4 varients take an array of ints or floats as appropriate. The array must be
at least 4 ints or floats in size.

11.6.3 Finding the velocity of the stage (deprecated)

int pi get v(PI AXIS);
Return value: the velocity is counts per second. This is approximate and low
resolution as this is converted from counts per cycle.
This function is deprecated, please use int pi get vel cps(PI AXIS); instead.

11.6.4 Finding the velocity of the stage

int pi get vel cps(PI AXIS);
Return value: the velocity is counts per second. This is approximate and low
resolution as this is converted from counts per cycle of the chipset.
float pi get vel umps(PI AXIS);
Return value: the velocity in microns per second. This is approximate and low
resolution as this is converted from counts per cycle of the chipset.
If the counts per micron value is not set for the stage this function returns 0
(rather than a /0 error).

11.6.5 Setting the velocity of the stage

int pi set vel cps(PI AXIS, int);
Sets the velocity in counts per second, it is approximate and low resolution as
this is converted to counts per cycle of the chipset.
int pi set vel umps(PI AXIS, float);
Sets the velocity in microns per second, it is approximate and low resolution as
this is converted to counts per cycle of the chipset.

11.6.6 pi get limit status

This function comes in two forms, with or without the axis.
int pi get limit status(PI AXIS axis) returns the limit status of the axis.
It returns PI LIMIT OK if both limit switches are good and returns PI ON POSITIVE LIMIT
or PI ON NEGATIVE LIMIT if it is on the +ve or -ve limit switches respectively.

41

int pi get limit status() returns the limit status of the complete system. It
returns PI LIMIT OK if all the limit switch’s are good or returns PI LIMIT BAD
is any of the limit switches are activated.

11.6.7 Inspect the motion controller registers

int pi get activity status(PI AXIS);
int pi get event status(PI AXIS);
int pi get signal status(PI AXIS);

Return value: the value of the register.
The following constants are defined in pi user.h:

// bits in the event status register
#define PI_MOTION_COMPLETE 0x0001
#define PI_WRAP_AROUND 0x0002
#define PI_BREAKPOINT1 0x0004
#define PI_CAPTURE_RECEIVED 0x0008
#define PI_MOTION_ERROR 0x0010
#define PI_EVENT_POS_LIMIT 0x0020
#define PI_EVENT_NEG_LIMIT 0x0040
#define PI_INSTRUCTION_ERR 0x0080
#define PI_COMMUNICATION_ERR 0x0800
#define PI_BREAKPOINT2 0x4000

// bits in the signal status and signal sense registers
#define PI_ENCODER_A 0x0001
#define PI_ENCODER_B 0x0002
#define PI_ENCODER_INDEX 0x0004
#define PI_ENCODER_HOME 0x0008
#define PI_SIGNAL_POS_LIMIT 0x0010
#define PI_SIGNAL_NEG_LIMIT 0x0020
#define PI_AXIS_IN 0x0040
#define PI_HALL_A 0x0080
#define PI_HALL_B 0x0100
#define PI_HALL_C 0x0200
#define PI_AXIS_OUT 0x0400
// signal sense register only
#define PI_STEP_OUTPUT 0x0800
#define PI_MOTOR_OUTPUT 0x1000

//bits in the activity status register
#define PI_PHASING_INITD 0x0001 // (not PI boards)
#define PI_MAX_VELOCITY 0x0002 // 1= max velocity
#define PI_TRACKING 0x0004 // 1= in tracking
#define PI_PROFILE_MODE_0 0x0008 // 000=trap

42

#define PI_PROFILE_MODE_1 0x0010 // 001=v contour
#define PI_PROFILE_MODE_2 0x0020 // 010=s-curve, 011=e-gear
#define PI_RESERVED 0x0040
#define PI_AXIS_SETTLED 0x0080 // 1= settled
#define PI_MOTOR_STATUS 0x0100 // 1= motor on
#define PI_POSITION_CAPTURE 0x0200 // 1= captured
#define PI_IN_MOTION 0x0400 // 1= moving
#define PI_ACT_POS_LIMIT 0x0800 // +ve limit
#define PI_ACT_NEG_LIMIT 0x1000 // -ve limit

11.7 Asynchronous data capture

Note: It is harder to use the documentation for asynchronous data capture than
it is to actually use asynchronous data capture. If you find the documentation
difficult please try the example below and then refer back to the documentation.
The card can generate interrupts on certain (programmed events). These events
are captured by the driver which interrogates the card and saves the event.
These events can be routed to the user program using the following functions:
int pi enable async capture(void (*)(int));
int pi read async events(struct pi stage event t *, int);

pi enable async capture(); takes a function of type void (*)(int) as its
argument (the event handler) this argument is a function that the user creates.
This function is called whenever a SIGIO signal is raised. pi enable async capture();
sets the driver to route SIGIO signals to the user program. If you are not using
any other asynchronous IO you never need to worry about the mechanics of
this process, however, if you do use other asynchronous IO (possibly in an X
windows program) then you will need to determine which file pointer generated
the event in which case please look at the library source code (you may want to
contact the library author for advice or a feature request). The int argument
to the event handler can be ignored, technically the event handler is a signal
handler using the POSIX signal handling functions, for more information see
man sigaction.
The events can be read using the pi read async events(); function, the first
argument is a pointer to type struct pi stage event t which is defined in the
header files, the second argument is the maximum number of events that you
can receive in one go.
The struct is currently defined as:

struct pi_stage_event_t{
int index;
char axis;
unsigned long ts_high,ts_low;
__u32 event;
};

43

where index is the event index, several events of different axis that occurred
together will share the same index otherwise this just counts up, axis is the axis
that caused the event, ts high and ts low are time stamp information using
the processor clock register, these are intended for debugging purposes (look up
rdtsc for more information) and event is the contents of the event staus register
after the event.
index, ts high and ts low are all likely to change in future versions.

11.7.1 Asynchronous data capture: example

#include <stdio.h>
#include <stdlib.h>
#include <pi_user.h>

void print_async_event(int);
main(){
int i,axis,sense;

// open and step the the board
pi_openboard();
axis=pi_axis_installed();
for(i=0;i<axis;i++){

pi_init_axis(i);
sense=pi_auto_set_limit(i);
}

// enable async events and link to print_async_event
pi_enable_async_capture((void (*)(int))print_async_event);

// make the board send "motion complete" messages for all axis
for(i=0;i<axis;i++){

pi_setQMC(PI_SET_INTERRUPT_MASK,i,0x0001);
}

// this is where you normal code goes
....
..
}

void print_async_event(int unused){
int n,i;
// structure fro receiving event data
struct pi_stage_event_t data[32];
// get the event data

n=pi_read_async_events(data, 32);
// if there were no events we don’t get anything so return, false alarm

if(n==0) return;

44

for(i=0;i<n;i++){
printf("Async event %d: index=%d, axis=%d, timestamp=%ud, event= %x", \\

i,data[i].index,data[i].axis,data[i].ts_low,data[i].event);
}

}

This program (if completed) would print a message every time one of the axis
stops moving. These event are received asynchronously via the POSIX signal
handling interface.

45

Chapter 12

pi execute();

PI compatibility functions

12.1 Introduction

PI’s windows DLL library (and other products) define a set of functions that
support the proprietary QFL library interface. A limited set of these functions
are included here to provide compatibility with PI’s existing library of products.
Most of the commands defined in the QFL library interface are simply PMD
motion chipset commands, a limited number (around 15) are very simple com-
binations of commands which are emulated by PI’s library (and the pi execute
library) and finally a very limited number (< 5) are more complex commands
which require more than 2 lines of C to code. Since the QFL interface does
not provide any advantage over using the lower level (pi user library I do not
personally recommend it. Since PI requested this as a feature here it is, I do
not endorse it (although it should work fine).

12.1.1 Implementing QFL function without the pi execute

library

If you want to implement the functionality of any QFL command but don’t
want to handle the report string (it is irritating converting to ASCII and back
to a number) then use the pi execute library source code to work out what the
function does and implement it with the pi user library.
The first place to look is the pi execute.h header, this defines all the QFL
constants in such a way as to make it easy to see what they do, for instance:

// commands that get something
#define PI_TY PI_E_CR + PI_GET_QMC + PI_GET_VELOCITY
#define PI_VE PI_E_CR + PI_GET_QMC + PI_GET_VERSION

46

// commands that set something (for execute)
#define PI_MUP PI_E_CW + PI_SET_QMC + PI_MULTI_UPDATE
#define PI_SA PI_E_CW + PI_SET_QMC + PI_SET_ACCELERATION

// more complex commands that are emulated by the library
#define PI_AB PI_E_C + PI_LIB_FUN + 0x00 // calls fAB NOT PI_READ_ANALOG 0xef
#define PI_BN PI_E_C + PI_LIB_FUN + 0x01 // brake on calls fBN
#define PI_BF PI_E_C + PI_LIB_FUN + 0x02 // brake off calls fBF

Command that have PI GET QMC in their bit mask just call pi getQMC();, com-
mands that have PI SET QMC in their bit mask just call pi setQMC();. The
symbolic constant at the beginning indicates the amount of data that is passed.
Commands that have PI LIB FUN are emulated by the library, usually by one or
two lines of C-code which is defined in the source file pi execute.cc which should
be simple to read.

12.2 Building the pi execute library

The pi execute is automatically built and installed when you build and install
the other library components.

12.3 Compiling with and using the pi execute

library

The pi execute library is not linked automatically when you use the pi user
library. To link against it you must add the following option to the compile line
-lpi execute (see section 9.3 on page 23).

12.3.1 Dependencies

The pi execute library is built on top of the pi user library, however the
pi user can be used completely independently. Linking to the pi execute
library unnecessarily injures a small memory overhead of a few kbytes.
There is no function supplied by the pi execute library which cannot be more
efficiently and elegantly implemented with the pi user library alone.

12.4 pi execute()

void pi execute(PI AXIS axis, PI E CMD cmd, int var, char * report);
is pretty much a direct replacement for the PI DLL library function execute();.
It returns any argument in the report string in a similar format to execute();.
If the axis or variable argument is irrelevant it is ignored (to be compatible).

47

#define PI REPORT SIZE 128 this constant is defined as the maximum size of
report strings. Use it to define storage for the report string thus:
char report[PI REPORT SIZE];.

12.4.1 Differences between pi execute() and execute();

The symbolic constants are different - if you use the constant from the DLL or
other PI libraries then the behaviour is undefined. This is because the code is
implemented in an entirely different way to provide faster, neater, simpler and
smaller code.

Possible report string differences

There are some minor differences with the return strings (I think, since I don’t
have a working version of the DLL I have to guess at this).
The Linux version always returns arguments as signed ints which are 32 bits long
and formatted in the report string appropriately (the DLL can return arguments
as signed and unsigned ints (16 bits) or as sign longs (32 bits)). Since all ints
under Linux are at least 32 bits long this distinction makes no sense in Linux and
some minor formatting issues may result in the report string (all hex numbers
will be in the format 0x00000000).
The QFL library contains several repeated commands, these commands are
functionally identical. In the Linux version these repeated commands are treated
as aliases. If you use one of these aliases then the return string will report the
name of the real command not the alias. The following commands are known
to be aliased:

#define PI_TX PI_GIP // alias for GIP
#define PI_TA PI_GA // alias for GA

12.4.2 Simple pass through commands

These commands are simply handed off to the PMD chipset via pi [gs]etQMC(...);
The definition indicates how many reads and writes the command takes to en-
able elementary error checking and make abuse of the command structure non-
fatal.

// send commands with no data (defined for execute)
#define PI_CI PI_E_C + PI_CLEAR_INTERRUPT
#define PI_NO PI_E_C + PI_NO_OPERATION
#define PI_RT PI_E_C + PI_RESET
#define PI_UP PI_E_C + PI_UPDATE

// commands that get something but require an argument (defined for execute)
#define PI_GB PI_E_WR + PI_GET_QMC + PI_GET_BREAKPOINT
#define PI_GBV PI_E_WR + PI_GET_QMC + PI_GET_BREAKPOINT_VALUE

48

// command that get something (defined for execute)
#define PI_GA PI_E_CR + PI_GET_QMC + PI_GET_ACCELERATION
#define PI_GAS PI_E_CR + PI_GET_QMC + PI_GET_ACTIVITY_STATUS
#define PI_TP PI_E_CR + PI_GET_QMC + PI_GET_ACTUAL_POSITION
#define PI_TV PI_E_CR + PI_GET_QMC + PI_GET_ACTUAL_VELOCITY
#define PI_GSM PI_E_CR + PI_GET_QMC + PI_GET_AUTO_STOP_MODE
#define PI_GAM PI_E_CR + PI_GET_QMC + PI_GET_AXIS_MODE
#define PI_GIP PI_E_CR + PI_GET_QMC + PI_GET_CAPTURE_VALUE
#define PI_GPP PI_E_CR + PI_GET_QMC + PI_GET_COMMANDED_POSITION
#define PI_GPV PI_E_CR + PI_GET_QMC + PI_GET_COMMANDED_VELOCITY
#define PI_TD PI_E_CR + PI_GET_QMC + PI_GET_DECELERATION
#define PI_GES PI_E_CR + PI_GET_QMC + PI_GET_EVENT_STATUS
#define PI_GGM PI_E_CR + PI_GET_QMC + PI_GET_GEAR_MASTER
#define PI_GGR PI_E_CR + PI_GET_QMC + PI_GET_GEAR_RATIO
#define PI_GSI PI_E_CR + PI_GET_QMC + PI_GET_INTEGRAL
#define PI_GL PI_E_CR + PI_GET_QMC + PI_GET_INTEGRATION_LIMIT
#define PI_GIA PI_E_CR + PI_GET_QMC + PI_GET_INTERRUPT_AXIS
#define PI_GIM PI_E_CR + PI_GET_QMC + PI_GET_INTERRUPT_MASK
#define PI_GJ PI_E_CR + PI_GET_QMC + PI_GET_JERK
#define PI_GD PI_E_CR + PI_GET_QMC + PI_GET_KD
#define PI_GI PI_E_CR + PI_GET_QMC + PI_GET_KI
#define PI_GP PI_E_CR + PI_GET_QMC + PI_GET_KP
#define PI_GF PI_E_CR + PI_GET_QMC + PI_GET_KVFF
#define PI_GLM PI_E_CR + PI_GET_QMC + PI_GET_LIMIT_SWITCH_MODE
#define PI_GMM PI_E_CR + PI_GET_QMC + PI_GET_MOTOR_MODE
#define PI_GOM PI_E_CR + PI_GET_QMC + PI_GET_OUTPUT_MODE
#define PI_TT PI_E_CR + PI_GET_QMC + PI_GET_POSITION
#define PI_TF PI_E_CR + PI_GET_QMC + PI_GET_POSITION_ERROR
#define PI_GPE PI_E_CR + PI_GET_QMC + PI_GET_POSITION_ERROR_LIMIT
#define PI_GPM PI_E_CR + PI_GET_QMC + PI_GET_PROFILE_MODE
#define PI_GT PI_E_CR + PI_GET_QMC + PI_GET_SAMPLE_TIME
#define PI_GSS PI_E_CR + PI_GET_QMC + PI_GET_SIGNAL_SENSE
#define PI_GTI PI_E_CR + PI_GET_QMC + PI_GET_TIME
#define PI_TY PI_E_CR + PI_GET_QMC + PI_GET_VELOCITY
#define PI_VE PI_E_CR + PI_GET_QMC + PI_GET_VERSION

// commands that set something (for execute)
#define PI_MUP PI_E_CW + PI_SET_QMC + PI_MULTI_UPDATE
#define PI_SA PI_E_CW + PI_SET_QMC + PI_SET_ACCELERATION
#define PI_SSM PI_E_CW + PI_SET_QMC + PI_SET_AUTO_STOP_MODE
#define PI_SAM PI_E_CW + PI_SET_QMC + PI_SET_AXIS_MODE
#define PI_SCS PI_E_CW + PI_SET_QMC + PI_SET_CAPTURE_SOURCE
#define PI_SD PI_E_CW + PI_SET_QMC + PI_SET_DECELERATION
#define PI_SEM PI_E_CW + PI_SET_QMC + PI_SET_ENCODER_MODULUS
#define PI_SGM PI_E_CW + PI_SET_QMC + PI_SET_GEAR_MASTER
#define PI_SGR PI_E_CW + PI_SET_QMC + PI_SET_GEAR_RATIO

49

#define PI_SIM PI_E_CW + PI_SET_QMC + PI_SET_INTERRUPT_MASK
#define PI_DL PI_E_CW + PI_SET_QMC + PI_SET_INTEGRATION_LIMIT
#define PI_SJ PI_E_CW + PI_SET_QMC + PI_SET_JERK
#define PI_DP PI_E_CW + PI_SET_QMC + PI_SET_KP
#define PI_DI PI_E_CW + PI_SET_QMC + PI_SET_KI
#define PI_DD PI_E_CW + PI_SET_QMC + PI_SET_KD
#define PI_DF PI_E_CW + PI_SET_QMC + PI_SET_KVFF
#define PI_RES PI_E_C + PI_SET_QMC + PI_RESET_EVENT_STATUS
#define PI_SB PI_E_CW + PI_SET_QMC + PI_SET_BREAKPOINT
#define PI_SBV PI_E_CW + PI_SET_QMC + PI_SET_BREAKPOINT_VALUE
#define PI_SLM PI_E_CW + PI_SET_QMC + PI_SET_LIMIT_SWITCH_MODE
#define PI_SMO PI_E_CW + PI_SET_QMC + PI_SET_MOTOR_COMMAND
#define PI_SMM PI_E_CW + PI_SET_QMC + PI_SET_MOTOR_MODE
#define PI_SOM PI_E_CW + PI_SET_QMC + PI_SET_OUTPUT_MODE
#define PI_SP PI_E_CW + PI_SET_QMC + PI_SET_POSITION
#define PI_SPE PI_E_CW + PI_SET_QMC + PI_SET_POSITION_ERROR_LIMIT
#define PI_SPM PI_E_CW + PI_SET_QMC + PI_SET_PROFILE_MODE
#define PI_SST PI_E_CW + PI_SET_QMC + PI_SET_SAMPLE_TIME
#define PI_SSS PI_E_CW + PI_SET_QMC + PI_SET_SIGNAL_SENSE
#define PI_SV PI_E_CW + PI_SET_QMC + PI_SET_VELOCITY

12.4.3 Simple emulated commands

These commands in the QFL command set are emulated by the library with
very little code.

// calls pi_setQMC(PI_SET_STOP_MODE, axis, 1); pi_setQMC(PI_UPDATE, axis, 0);
#define PI_AB PI_E_C + PI_LIB_FUN + 0x00

// calls pi_set_brake(axis,...);
#define PI_BN PI_E_C + PI_LIB_FUN + 0x01
#define PI_BF PI_E_C + PI_LIB_FUN + 0x02

// calls pi_DO_up(pi_n2b(...)); / pi_DO_down(pi_n2b(...));
#define PI_CN PI_E_CW + PI_LIB_FUN + 0x03
#define PI_CF PI_E_CW + PI_LIB_FUN + 0x04

// calls pi_setQMC(PI_SET_ACTUAL_POSITION,axis,0);
#define PI_DH PI_E_C + PI_LIB_FUN + 0x05

// sprintf(report,"Linux V 0.5 May 2003");
#define PI_DLL PI_E_C + PI_LIB_FUN + 0x06

// pi_setQMC(PI_SET_POSITION,axis,0); pi_setQMC(PI_UPDATE,axis);
#define PI_GH PI_E_C + PI_LIB_FUN + 0x09

50

// pi_move_rel(axis,var); / pi_move_abs(axis,var);
#define PI_MR PI_E_CW + PI_LIB_FUN + 0x10
#define PI_MA PI_E_CW + PI_LIB_FUN + 0x11

// not yet supported - will call pi_move_off_limits();
#define PI_REC PI_E_C + PI_LIB_FUN + 0x12

// pi_setQMC(PI_SET_STOP_MODE,axis,2); pi_setQMC(PI_UPDATE,axis);
#define PI_ST PI_E_C + PI_LIB_FUN + 0x14

// returns pi_get_DI();
#define PI_TC PI_E_CR + PI_LIB_FUN + 0x15

// returns pi_getQMC(PI_GET_ACTUAL_POSITION,axis)-pi_getQMC(PI_GET_POSITION,axis);
#define PI_TE PI_E_CR + PI_LIB_FUN + 0x16

// usleep(1000*var);
#define PI_WA PI_E_C + PI_LIB_FUN + 0x17

// temp=pi_n2b(var); while(!(pi_get_DI() & temp)) usleep(1000);
#define PI_WC PI_E_C + PI_LIB_FUN + 0x18

// pi_wait_stop(axis);
#define PI_WS PI_E_C + PI_LIB_FUN + 0x19 // calls sWS waits for axis to stop

// pi_wait_stop(axis); pi_DO_up(0x01);
#define PI_WT PI_E_CW + PI_LIB_FUN + 0x20 // calls fWT (waitstop then setQMCA(WRITE_IO, 0, 0, v);)

12.4.4 Complex commands

These command take more than 2 lines of code to emulate.

#define PI_RET PI_E_C + PI_LIB_FUN + 0x13 // calls fRET which calls:
// setQMC(RESET_EVENT_STATUS, ax, 0);
// gets and sets the velocity and position
// setQMC(SET_MOTOR_MODE, ax, 1);
// setQMC(UPDATE, ax, 0);

12.4.5 FEN, FEP and AutoFindEdge

These functions are not implemented, however, the function pi find home()
will find the hardware defined home position with high accuracy.

// not supported yet
// Use pi_find_home(); or request a feature

51

#define PI_FEP PI_E_C + PI_LIB_FUN + 0x07
#define PI_FEN PI_E_C + PI_LIB_FUN + 0x08

12.4.6 Comment on selected commands

RET

RET is defined in the DLL / QFL section as “return to working conditions”.
Analysis of the code indicates that it is flawed and prone to an irritating bug.
This bug is essentially reproduced in the Linux library for compatibility. RET
causes the “Event Status Register” (ESR) for the axis to be reset in the PMD
chipset. This would normally follow some sort of motion error that would cause
an ESR exception. The PMD chipset usually stops the motion dead in the event
of a potentially damaging exception. It can do this by (1) setting the velocity
to 0 and (2) turning the motor off.
RET attempts to recover from this by (1) reseting the ESR, clearing the excep-
tion, (2) setting the desired position to the current position to prevent unwanted
motion after recovery, (3) reseting the velocity to the preexception value and
(4) turning the motors on. The bug here is that the preexception velocity is not
statefully stored by the chipset, the driver or the library. It can be stored iff the
driver object method “SetVelocity” is exclusively used to set the velocity but
this is not the case throughout the driver and this is not documented. Thus the
restored velocity can be an unknown following a call to RET.
The Linux driver does not attempt to fix this bug, instead is tries to harmlessly
emulate it. Following a call to PI RET / RET the velocity will be the same
as it was before the call to RET (ie the original velocity or 0 depending on the
state of the chip set). I recommend that whatever the driver that the velocity
is statefully reset after calls to RET.

WA

The manual says, “Suspend command execution for n milliseconds. This com-
mand can be used in compound command structures to define absolute delay
times”, remember all the caveats you ever heard about real time processing - it
all applies here. In the Linux driver this is merely implemented with a call to
the standard library function usleep(). This is usually accurate to around ±1

HZ
in an unloaded system (ie 10 ms on an x86 box running a stock 2.4.xx kernel.
The Windows library uses a similar technique.

WC

Sits in a loop until the digital input channel goes high, fits a usleep(1000) in the
loop to delay / yield execution. You can write a much better version yourself.

52

WS

Just calls pi wait stop();, note that this cannot “be interrupted by the keyboard
by pressing CNTRL and SHIFT at the same time” like the windows driver can.
You can however stop / kill a program locked in a wait here by the usual methods
(see man kill).

WT

Seems to be largely useless this function, waits for motion to stop then turns
digital channel 1 (bit 0) on.

12.5 Direct emulation of the QFL command set

The pi execute library defines all the QFL commands with a PI prefix to
prevent namespace pollution (to reduce the chance that the defined constants
will conflict with another library). The facility to drop this prefix is supplied
by defining the constant PI EXECUTE DEFINES before the header file is included.
This then defines the 90 or so constants that make up the QFL command set
exactly as PI do. For example:

#define PI_EXECUTE_DEFINES
#include <pi_execute.h>

53

