Cell Imaging Using Picosecond Ultrasonics

From Applied Optics Wiki
Revision as of 07:28, 17 October 2013 by Richard Smith (talk | contribs) (Detection mechanism - Brillouin Oscillations)

Jump to: navigation, search

Motivation

Detection mechanism - Brillouin Oscillations

Brillouin simple.png

The probe light is reflected from the sample surface to the detector, but there is also a reflection from the acoustic wave packet traveling in the sample. This happens because the acoustic wave causes a change in the local refractive index in the sample and so acts as a weak mirror. These reflections interfere at the detector and as the phase of the reflections from the acoustic wave is changing leads to an oscillating signal. These oscillations are termed Brillouin Oscillations.

The frequency of the oscillation is given by the simple equation: Fb = 2*Va*n/λ

So if we can measure this signal we can measure the acoustic velocity, as long as we know the laser wavelength and the refractive index.

Instrument

description of the ASOPS pump probe system and figure.

Substrate Design

the cells are grown on a transducer substrate similar to those described here. The optimization of the transducer layer is different in this case. Here we are much more concerned with optimizing the optical properties of the transducers. The goal is to reduce the amount of blue light reaching the cell and either maximize the reflected or transmitted light, depending on the experiment requirements. We still have to take care that the acoustic performance of the transducer is good and that the acoustic bandwidth is sufficient to generate waves at the Brillouin frequency.

Example results

Publications and Talks

IOP LU2013